Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(A=\left(2^0+2^2+2^4+...+2^{2018}\right)+\left(2^1+2^3+...+2^{2017}\right)\)
\(=\left(1+2^2\right)+\left(2^4+2^6\right)+...+\left(2^{2016}+2^{2018}\right)+2^1+\left(2^3+2^5\right)+...+\left(2^{2015}+2^{2017}\right)\)
\(=\left(1+2^2\right)+2^4\left(1+2^2\right)+...+2^{2016}\left(1+2^2\right)+2^1+2^3\left(1+2^2\right)+...+2^{2015}\left(1+2^2\right)\)
\(=5\left(1+2^4+...+2^{2016}\right)+2+5\left(2^3+...+2^{2015}\right)\)chia 5 dư 2
Nhận xét: Vì 1+22 =5 chia chết cho 5. Ghép các cặp đôi sao cho xuất hiện 1+22
2,
Nhận xét: Với a không chia hết cho 5
Ta có: a4 đồng dư với 1 module 5 hay a4-1 chia hết cho 5 với mọi a không chia hết cho 5
Suy ra a5-a=a(a4-1) chia hết cho 5 với mọi a thuộc Z
a(a4-1)=a(a2-1)(a2+1) =a(a-1)(a+1)(a2+1) chia hết cho 2 và chia hết cho 3 vì a(a+1) là 2 số nguyên liên tiếp, a(a+1)(a-1) là 3 số nguyên liên tiếp
Vậy a5-a chia hết cho 30 (=2.3.5) vì (2,3,5)=1
(a15 + a25 + ... + an5) -(a1 + a2+...+an) =( a15-a1)+...+(an5-an) chia hết cho 30
Mà a1 + a2+...+an chia hết cho 30
Vậy a15 + a25 + ... + an5 chia hết cho 30 hay a15 + a25 + ... + an5 = 0 (mod 30)
\(a^2+b^2=c^2+d^2\Leftrightarrow a^2-c^2=d^2-b^2\Leftrightarrow\left(a-c\right)\left(a+c\right)=\left(d-b\right)\left(d+b\right)\)
mà a+b=c+d => a-c=d-b => \(\Leftrightarrow\left(a-c\right)\left(a+c\right)=\left(a-c\right)\left(d+b\right)\)
TH1: a-c=0 hay a=c, kết hợp với a+b=c+d => b=d
=>a2014+b2014=c2014+d2014
TH2: a-c\(\ne\)0 hay a\(\ne\)c, từ \(\left(a-c\right)\left(a+c\right)=\left(a-c\right)\left(d+b\right)\)=>a+c=d+b
mà a+b=c+d => a+c+a+b=d+b+c+d => 2a=2d => a=d => b=c
=>a2014+b2014=c2014+d2014
Từ 2 trường hợp trên => đpcm