K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2016

\(A=n^2+n+1=n\left(n+1\right)+1\)

  • Nếu \(n\vdots5\Rightarrow n\left(n+1\right)\vdots5\Rightarrow A=n\left(n+1\right)+1\)không chia hết cho 5.
  • Nếu \(n\equiv1\left(mod5\right)\Rightarrow n+1\equiv2\left(mod5\right)\Rightarrow n\left(n+1\right)\equiv2\left(mod5\right)\Rightarrow A=n\left(n+1\right)+1\equiv3\left(mod5\right)\)không chia hết cho 5.
  • Nếu \(n\equiv2\left(mod5\right)\Rightarrow n+1\equiv3\left(mod5\right)\Rightarrow n\left(n+1\right)\equiv6\equiv1\left(mod5\right)\Rightarrow A=n\left(n+1\right)+1\equiv2\left(mod5\right)\)không chia hết cho 5.
  • Nếu \(n\equiv3\left(mod5\right)\Rightarrow n+1\equiv4\left(mod5\right)\Rightarrow n\left(n+1\right)\equiv12\equiv2\left(mod5\right)\Rightarrow A=n\left(n+1\right)+1\equiv3\left(mod5\right)\)không chia hết cho 5.
  • Nếu \(n\equiv4\left(mod5\right)\Rightarrow n+1\vdots5\Rightarrow n\left(n+1\right)\vdots5\Rightarrow A=n\left(n+1\right)+1\)không chia hết cho 5.

Vậy, trong mọi trường hợp thì A không chia hết cho 5 nên A không chia hết cho 20052017 (vì 2005 chia hết cho 5)

6 tháng 1 2016

Ta có: n2+n+5=n.n+n+5 =n(n+1)+5

Mà n+1 và n là 2 số tự nhiên liên tiếp nên CSTC khác 3 và 8

=>n(n+1)+2 có CSTC khác 5 và 0

=>n(n+1)+2 không chia hết cho 5

Vậy không tồn tại số tự nhiên n để n2+n+2 chia hết cho 5

29 tháng 3 2015

bài giải : 19952000 tận cùng bởi chữ số 5 nên chia hết cho 5. Vì vậy, ta đặt vấn đề là liệu n2 + n + 1 có chia hết cho 5 không ?

Ta có n2 + n = n(n + 1), là tích của hai số tự nhiên liên tiếp nên chữ số tận cùng của n2 + n chỉ có thể là 0 ; 2 ; 6 => n2 + n + 1 chỉ có thể tận cùng là 1 ; 3 ; 7 => n2 + n + 1 không chia hết cho 5.

Vậy không tồn tại số tự nhiên n sao cho n2 + n + 1 chia hết cho 19952000.

29 tháng 3 2015

: 19952000 tận cùng bởi chữ số 5 nên chia hết cho 5. Vì vậy, ta đặt vấn đề là liệu n2 + n + 1 có chia hết cho 5 không ?

Ta có n2 + n = n(n + 1), là tích của hai số tự nhiên liên tiếp nên chữ số tận cùng của n2 + n chỉ có thể là 0 ; 2 ; 6 => n2 + n + 1 chỉ có thể tận cùng là 1 ; 3 ; 7 => n2 + n + 1 không chia hết cho 5.

Vậy không tồn tại số tự nhiên n sao cho n2 + n + 1 chia hết cho 19952000.

15 tháng 10 2018

Ta có n2 + n = n(n + 1), là tích của hai số tự nhiên liên tiếp nên chữ số tận cùng của n2 + n chỉ có thể là 0 ; 2 ; 6 => n2 + n + 1 chỉ có thể tận cùng là 1 ; 3 ; 7 => n2 + n + 1 không chia hết cho 5.

Vậy không tồn tại số tự nhiên n sao cho n2 + n + 1 chia hết cho 19952000.

26 tháng 12 2016

không vì A=n^2+n+1 nên A luôn là 1 số lẻ

suy ra A không chia hết cho 2 nên A không chia hết cho bội của 2 là 2010

26 tháng 12 2016

Không Vì A luôn là số lẻ => không chia hết cho 2=> không chia hết cho 2010

25 tháng 12 2015

câu hỏi tương tự nhé bạn