K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2019

ta có : 1.2+2.3+3.4+.....+99.100=99.100.101 /3 =333300

mà 1.2+2.3+....+9.10+9.10.11/3=330

=>E= 333300-330=332970

chịuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

29 tháng 6 2015

\(A=\frac{1}{7}.\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{68}-\frac{1}{70}\right)\)

\(A=\frac{1}{7}.\left(\frac{1}{10}-\frac{1}{70}\right)=\frac{1}{7}.\frac{3}{35}=\frac{3}{245}\)

A=\(\frac{7}{10.11}\)+\(\frac{7}{11.12}\)+\(\frac{7}{12.13}\)+...+\(\frac{7}{69.70}\)

A=\(\frac{7}{10}\)-\(\frac{7}{11}\)+\(\frac{7}{11}\)-\(\frac{7}{12}\)+\(\frac{7}{12}\)-\(\frac{7}{13}\)+...+\(\frac{7}{69}\)-\(\frac{7}{70}\)

A=\(\frac{7}{10}-\frac{7}{70}\)

A=\(\frac{7}{10}-\frac{1}{10}\)

Ạ=\(\frac{6}{10}=\frac{3}{5}\).

18 tháng 8 2016

\(2\left(\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1}{9}\)

\(\left(\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{1}{9}.\frac{1}{2}\)

\(\frac{1}{9}-\frac{1}{x+1}=\frac{1}{18}\)

\(\frac{1}{x+1}=\frac{1}{9}-\frac{1}{18}=\frac{1}{9}\)

=>x+1=9

=>x=8

 

1 tháng 5 2020

yeu thanks bạn

13 tháng 8 2018

P/s: làm từng phần một

1.

\(2A=2^2+2^3+...+2^{101}\)

\(2A-A=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)

\(A=2^{101}-2\)

13 tháng 8 2018

2.

\(\frac{A}{2}=\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{59\cdot61}\)

\(\frac{A}{2}=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\)

\(\frac{A}{2}=\frac{1}{5}-\frac{1}{61}\)

\(\frac{A}{2}=\frac{56}{305}\)

\(A=\frac{112}{305}\)

mình biết

\(\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{2015.2016}\)

\(\Rightarrow\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{2015}-\frac{1}{2016}\)

ta rút gọn được

\(\Rightarrow\frac{1}{10}-\frac{1}{2016}\)

\(\Rightarrow\frac{1003}{10080}\)

9 tháng 9 2019

Giải: A = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/98.99.100
Áp dụng phương pháp khử liên tiếp: viết mỗi số hạng thành hiệu của hai số sao cho số trừ ở nhóm trước bằng số bị trừ ở nhóm sau.
Ta xét:
1/1.2 - 1/2.3 = 2/1.2.3; 1/2.3 - 1/3.4 = 2/2.3.4;...; 1/98.99 - 1/99.100 = 2/98.99.100
tổng quát: 1/n(n+1) - 1/(n+1)(n+2) = 2/n(n+1)(n+2). Do đó:
2A = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 +...+ 2/98.99.100
= (1/1.2 - 1/2.3) + (1/2.3 - 1/3.4) +...+ (1/98.99 - 1/99.100)
= 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ... + 1/98.99 - 1/99.100
= 1/1.2 - 1/99.100
= 1/2 - 1/9900
= 4950/9900 - 1/9900
= 4949/9900.
Vậy A = 4949 / 9900

9 tháng 9 2019

Chúc bạn học tốt!

Tham khảo:

Tính: 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + 1/4.5.6,1/1.2.3 + 1/2.3.4 + 1/3.4.5 + 1/4.5.6,Toán học Lớp 6,bài tập Toán học Lớp 6,giải bài tập Toán học Lớp 6,Toán học,Lớp 6

Tính: 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + 1/4.5.6,1/1.2.3 + 1/2.3.4 + 1/3.4.5 + 1/4.5.6,Toán học Lớp 6,bài tập Toán học Lớp 6,giải bài tập Toán học Lớp 6,Toán học,Lớp 6

16 tháng 3 2018

\(C=\dfrac{7}{10.11}+\dfrac{7}{11.12}+\dfrac{7}{12.13}+...+\dfrac{7}{69.70}\)

= \(7\left(\dfrac{1}{10.11}+\dfrac{1}{11.12}+\dfrac{1}{12.13}+...+\dfrac{1}{69.70}\right)\)

= \(7\left(\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{13}+...+\dfrac{1}{69}-\dfrac{1}{70}\right)\)

= \(7\left(\dfrac{1}{10}-\dfrac{1}{70}\right)\)

=\(7\left(\dfrac{7}{70}-\dfrac{1}{70}\right)\)

= \(7.\dfrac{6}{70}\)

= \(\dfrac{3}{5}\)

DT
10 tháng 11 2023

\(\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right).x=\dfrac{1}{5}\\ =>\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right).x=\dfrac{1}{5}\\ =>\left(\dfrac{1}{2}-\dfrac{1}{100}\right).x=\dfrac{1}{5}\\ =>\dfrac{49}{100}.x=\dfrac{1}{5}\\ =>x=\dfrac{1}{5}:\dfrac{49}{100}=\dfrac{1}{5}.\dfrac{100}{49}\\ =>x=\dfrac{20}{49}\)

2 tháng 9 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

2 tháng 9 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)