K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2019

Giải: A = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/98.99.100
Áp dụng phương pháp khử liên tiếp: viết mỗi số hạng thành hiệu của hai số sao cho số trừ ở nhóm trước bằng số bị trừ ở nhóm sau.
Ta xét:
1/1.2 - 1/2.3 = 2/1.2.3; 1/2.3 - 1/3.4 = 2/2.3.4;...; 1/98.99 - 1/99.100 = 2/98.99.100
tổng quát: 1/n(n+1) - 1/(n+1)(n+2) = 2/n(n+1)(n+2). Do đó:
2A = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 +...+ 2/98.99.100
= (1/1.2 - 1/2.3) + (1/2.3 - 1/3.4) +...+ (1/98.99 - 1/99.100)
= 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ... + 1/98.99 - 1/99.100
= 1/1.2 - 1/99.100
= 1/2 - 1/9900
= 4950/9900 - 1/9900
= 4949/9900.
Vậy A = 4949 / 9900

9 tháng 9 2019

Chúc bạn học tốt!

Tham khảo:

Tính: 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + 1/4.5.6,1/1.2.3 + 1/2.3.4 + 1/3.4.5 + 1/4.5.6,Toán học Lớp 6,bài tập Toán học Lớp 6,giải bài tập Toán học Lớp 6,Toán học,Lớp 6

Tính: 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + 1/4.5.6,1/1.2.3 + 1/2.3.4 + 1/3.4.5 + 1/4.5.6,Toán học Lớp 6,bài tập Toán học Lớp 6,giải bài tập Toán học Lớp 6,Toán học,Lớp 6

2 tháng 9 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

2 tháng 9 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

16 tháng 6 2015

A = 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/99.100

A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +.....+ 1/99- 1/100

A= 1 - 1/100

A= 99/100

16 tháng 6 2015

AXXXXXXXXXXXXXXXXXXXXXXX

ghi xong hết rồi

mạng nó rớt, ấn gửi trả lời mà không biết

tong teo

AH
Akai Haruma
Giáo viên
16 tháng 9 2023

Lời giải:

$x=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}+\frac{1}{100}$

$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{99-98}{98.99}+\frac{100-99}{99.100}+\frac{1}{100}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}$

$=1$

`# \text {DNamNgV}`

\(x-\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}-...-\dfrac{1}{98\cdot99}=\dfrac{1}{100}+\dfrac{1}{99\cdot100}\)

\(\Rightarrow x-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{98\cdot99}\right)=\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Rightarrow x-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{98}-\dfrac{1}{99}\right)=\dfrac{1}{99}\)

\(\Rightarrow x-\left(1-\dfrac{1}{99}\right)=\dfrac{1}{99}\)

\(\Rightarrow x-\dfrac{98}{99}=\dfrac{1}{99}\)

\(\Rightarrow x=\dfrac{1}{99}+\dfrac{98}{99}\)

\(\Rightarrow x=\dfrac{99}{99}\)

\(\Rightarrow x=1\)

Vậy, `x = 1.`

4 tháng 11 2016

Ta có :

\(\begin{cases}\left|x+\frac{1}{1.2}\right|\ge0\\\left|x+\frac{1}{2.3}\right|\ge0\\...\\\left|x+\frac{1}{99.100}\right|\ge0\end{cases}\)\(\left(\forall x\right)\)

\(\Rightarrow100x>0\)

=> x > 0

=> \(\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+....+\left|x+\frac{1}{99.100}\right|\)

\(=x+\frac{1}{1.2}+x+\frac{1}{2.3}+.....+x+\frac{1}{99.100}=100x\)

\(\Rightarrow100x+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=100x\)

\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=0\)

Dễ thấy VT \(\ne\)VP

=> \(x\in\varnothing\)

4 tháng 11 2016

Ta có: \(\left|x+\frac{1}{1.2}\right|\ge0;\left|x+\frac{1}{2.3}\right|\ge0;...;\left|x+\frac{1}{99.100}\right|\ge0\)

=> \(\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+...+\left|x+\frac{1}{99.100}\right|\ge0\)

=> \(100x\ge0\Rightarrow x\ge0\)

=> \(\left|x+\frac{1}{1.2}\right|=\left(x+\frac{1}{1.2}\right);\left|x+\frac{1}{2.3}\right|=\left(x+\frac{1}{2.3}\right);...;\left|x+\frac{1}{99.100}\right|=\left(x+\frac{1}{99.100}\right)\)=> \(\left(x+\frac{1}{1.2}\right)+\left(x+\frac{1}{2.3}\right)+...+\left(x+\frac{1}{99.100}\right)=100x\)

=> 99x + \(\frac{99}{100}\) = 100x

=> x = \(\frac{99}{100}\)

30 tháng 8 2015

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-...-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)

 

30 tháng 8 2015

Phạm Trần Khánh An : l.i.k.e tiếp cái con khỉ