K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2016

=5/2(1/4-1/6+1/6-1/8+...+1/208-1/300)

=5/2(1/4-1/300)

=5/2.37/150=37/60

3 tháng 4 2019

\(\frac{5}{4\cdot6}+\frac{5}{6\cdot8}+\frac{5}{8\cdot10}+...+\frac{5}{298\cdot300}\) 

\(=\frac{5}{2}\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{298}-\frac{1}{300}\right)\) 

\(=\frac{5}{2}\left(\frac{1}{4}-\frac{1}{300}\right)\) 

\(=\frac{5}{2}\cdot\frac{37}{150}\) 

\(=\frac{37}{60}\)

3 tháng 4 2019

\(\frac{5}{4.6}+\frac{5}{6.8}+\frac{5}{8.10}+...+\frac{5}{298.300}\)

\(\frac{5}{2}.\left(\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+...+\frac{2}{298.300}\right)\)

\(\frac{5}{2}.\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{298}-\frac{1}{300}\right)\)

\(\frac{5}{2}.\left(\frac{1}{4}-\frac{1}{300}\right)\)

\(\frac{5}{2}.\frac{37}{150}\)

\(\frac{37}{60}\)

22 tháng 1 2017

\(\frac{5}{4.6}+\frac{5}{6.8}+\frac{5}{8.10}+...+\frac{5}{298.300}\)

\(=\frac{5}{2}\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{298}-\frac{1}{300}\right)\)

\(=\frac{5}{2}\left(\frac{1}{4}-\frac{1}{300}\right)=\frac{5}{2}.\frac{37}{150}=\frac{37}{60}\)

22 tháng 6 2019

\(\frac{5}{4\cdot6}+\frac{5}{6\cdot8}+...+\frac{5}{298\cdot300}\)

\(=\frac{5}{2}\cdot\left(\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{298\cdot300}\right)\)

\(=\frac{5}{2}\cdot\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{298}-\frac{1}{300}\right)\)

\(=\frac{5}{2}\cdot\left(\frac{1}{4}-\frac{1}{300}\right)\)

\(=\frac{37}{60}\)

22 tháng 6 2019

thanks bạn

9 tháng 4 2021

\(\frac{5}{4.6}+\frac{5}{6.8}+\frac{5}{8.10}+...+\frac{5}{198.200}\)

\(=\frac{5}{2}\left(\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+...+\frac{2}{198.200}\right)\)

\(=\frac{5}{2}\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)

\(=\frac{5}{2}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=\frac{5}{2}\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(=\frac{5}{2}\left(\frac{50}{100}-\frac{1}{100}\right)\)

\(=\frac{5}{2}.\frac{49}{100}\)

\(=\frac{49}{40}\)

9 tháng 4 2021

Ta sẽ tách 5 ra ngoài

b) Ta có: \(S=\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{298\cdot300}\)

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{298}-\frac{1}{300}\)

\(=\frac{1}{2}-\frac{1}{300}=\frac{149}{300}< \frac{200}{300}=\frac{2}{3}\)

hay \(S< \frac{2}{3}\)(1)

Ta có: \(\frac{1}{101}>\frac{1}{102}>\frac{1}{103}>...>\frac{1}{300}\)

nên \(\left(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\right)+\left(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{300}\right)>\left(\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\right)+\left(\frac{1}{300}+\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}\right)\)(vì mỗi ngoặc trên đều có 100 phân số có tử là 1)

\(\Leftrightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{300}>\frac{1}{200}\cdot100+\frac{1}{300}\cdot100\)

\(\Leftrightarrow Q>\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)

\(\frac{5}{6}>\frac{4}{6}=\frac{2}{3}\)

nên \(Q>\frac{2}{3}\)

hay \(\frac{2}{3}< Q\)(2)

Từ (1) và (2) suy ra S<Q

a) =1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101

    =1-1/101

    =100/101

b) =(2/1.3+2/3.5+2/5.7+...+2/99.101).2,5

    =(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101).2,5

    =(1-1/101).2,5

    =100/101.2,5

    =250/101

c) =(2/2.4+2/4.6+2/6.8+...+2/2008-2/2010).2

    =(1/2-1/4+1/4-1/6+1/6-1/8+...+1/2008-1/2010).2

    =(1/2-1/2010).2

    =1004/1005

25 tháng 4 2016

\(\frac{4}{4.6}+\frac{4}{6.8}+\frac{4}{8.10}+...+\frac{4}{28.30}\)

\(=2.\left(\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+...+\frac{2}{28.10}\right)\)

\(=2.\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+...+\frac{1}{28}-\frac{1}{30}\right)\)

\(=2.\left(\frac{1}{4}-\frac{1}{30}\right)=2.\left(\frac{15}{60}-\frac{2}{60}\right)=2.\frac{13}{60}=\frac{26}{60}=\frac{13}{30}\)

28 tháng 3 2016

trong sách nâng cao và phát triển 6 đó bạn

Q=1/4(1.4/2.3+2.5/3.4+3.6/4.5+...+48.51/49.50)

=1/4(2.3−2/2.3+3.4−2/3.4+4.5−2/4.5+...+49.50−2/49.50)

=1/4(1− 2/2.3+ 1− 2/3.4+ 1− 2/4.5+...+1− 2/49.50)

=1/4[48−2(1/2.3+1/3.4+...+1/49.50)]

=1/4[48−2(1/2−1/3+1/3−1/4+...+1/49−150)]

=14[48−2(1/2−1/50)]=294/25