Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ý bạn là: \(S_1=\frac{3}{4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{40\cdot43}\)đúng không?
\(S_1=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}\)
\(S_1=1-\frac{1}{43}< 1\left(đpcm\right)\)
b) \(S_2=\frac{6}{2\cdot5}+\frac{6}{5.8}+\frac{6}{8\cdot11}+...+\frac{6}{29\cdot32}\)
=>\(\frac{S_2}{2}=\frac{3}{2\cdot5}+\frac{3}{5.8}+\frac{3}{8\cdot11}+...+\frac{3}{29\cdot32}\)
\(\frac{S_2}{2}=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{29}-\frac{1}{32}\)
\(\frac{S_2}{2}=\frac{1}{2}-\frac{1}{32}=\frac{16}{32}-\frac{1}{32}=\frac{15}{32}\)
=>\(S_2=\frac{15}{32}\cdot2=\frac{15}{16}< 1\left(đpcm\right)\)
\(S=\frac{6}{2.5}+\frac{6}{5.8}+\frac{6}{8.11}+...+\frac{6}{29.32}\)
\(S=2.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{29}-\frac{1}{32}\right)\)
\(S=2.\left(\frac{1}{2}-\frac{1}{32}\right)\)
\(S=2.\frac{15}{31}\Rightarrow S=\frac{15}{16}< 1\)
\(S=\frac{6}{2.5}+\frac{6}{5.8}+\frac{6}{8.11}+...+\frac{6}{29.32}\)
\(S=\left(\frac{1}{2}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{8}\right)+\left(\frac{1}{8}-\frac{1}{11}\right)+...+\left(\frac{1}{29}-\frac{1}{32}\right)\)
\(S=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{29}-\frac{1}{32}\)
\(S=\frac{1}{2}-\frac{1}{32}\)
\(S=\frac{17}{32}< 1\)
\(S=2.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{29.32}\right)\)
\(S=2.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{29}-\frac{1}{32}\right)\)
\(S=2.\left(\frac{1}{2}-\frac{1}{32}\right)\)
\(S=1-\frac{1}{16}< 1\)
Vậy \(S< 1\)
S = 1/3 . (1/2 - 1/5 + 1/5 - 1/8 + ... + 1/17 - 1/20)
= 1/3 . (1/2 - 1/20)
= 1/3 . 9/20
= 3/20
\(3S=\frac{5-2}{2.5}+\frac{8-5}{5.8}+\frac{11-8}{8.11}+...+\frac{20-17}{17.20}\)
\(3S=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\)
\(S=\frac{9}{20}:3=\frac{3}{20}\)
xét vế trái
ta có:đề\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{14}-\frac{1}{17}\)
\(=\frac{1}{2}-\frac{1}{17}< < \frac{1}{2}\)
vậy vế trái bé hơn \(\frac{1}{2}\)
P/S: \(< < \)là luôn luôn bé hơn nha
k mình nha bạn
Thiengl2015#
Ta có :
\(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{14.17}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{14}-\frac{1}{17}\)
\(=\frac{1}{2}-\frac{1}{17}\)
Mà \(\frac{1}{2}-\frac{1}{17}< \frac{1}{2}\)
Nên \(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{14.17}< \frac{1}{2}\left(đpcm\right)\)
Bài 1 :
S = \(\frac{6}{2.5}+\frac{6}{5.8}+...+\frac{6}{29.32}\)
= 2 . \(\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{29.32}\right)\)
= 2 . \(\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{29}-\frac{1}{32}\right)\)
= 2 . \(\left(\frac{1}{2}-\frac{1}{32}\right)\)= ....
Ta có: \(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{14.17}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{14}-\frac{1}{17}\)
\(=\frac{1}{2}-\frac{1}{17}=\frac{15}{34}\)\(< \frac{17}{34}=\frac{1}{2}\)
\(\Rightarrow\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{14.17}< \frac{1}{2}\)
Vậy:..........................................(đpcm)
Ta có: 3S = 3/2.5 + 3/5.8 + ... + 3/47.50
3S = 1/2 - 1/5 + 1/5 - 1/8 + ... +1/47 - 1/50
3S = 1/2 - 1/50
3S = 12/25
=> S = 12/25 : 3 = 4/25
k, đây là dạng toán sai phân hữu hạn.
-----------
số hạng tổng quát là 1/[n.(n+3)] = (1/3).[(n+3)-n]/[n.(n+3)] = (1/3). [1/n - 1/(n+3)]
=>
A = (1/3).[(1/2 - 1/5) + (1/5 - 1/8) + (1/8 - 1/11) +...+(1/44 - 1/47) + (1/47 - 1/50)]
= (1/3).[1/2 - 1/50]
= (1/3). (24/50) = (1/3).(12/25) = 4/25
vậy A = 4/25
---------
good luck!
a/ Ta có: \(S=1+\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+....+\frac{1}{27}-\frac{1}{30}\right)\)
\(S=1+\left(\frac{1}{2}-\frac{1}{30}\right)\)
\(S=1+\frac{7}{15}\)
\(S=\frac{22}{15}\)
b/ \(S=-4+\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{107}-\frac{1}{110}\right)\)
\(S=-4+\left(1-\frac{1}{110}\right)\)
\(S=-4+\frac{109}{110}\)
\(S=-3\frac{1}{110}\)
\(S=\frac{6}{2.5}+\frac{6}{5.8}+.......+\frac{6}{29.32}\)
\(S=2\left(\frac{3}{2.5}+\frac{3}{5.8}+......+\frac{3}{29.32}\right)\)
\(S=2\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+......+\frac{1}{29}-\frac{1}{32}\right)\)
\(S=2\left(\frac{1}{2}-\frac{1}{32}\right)\)
\(S=2.\frac{15}{32}\)
\(S=\frac{15}{16}< 1\RightarrowĐPCM\)
Vậy \(S=\frac{15}{16}\)