Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{6}{2.5}+\frac{6}{5.8}+.......+\frac{6}{29.32}\)
\(S=2\left(\frac{3}{2.5}+\frac{3}{5.8}+......+\frac{3}{29.32}\right)\)
\(S=2\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+......+\frac{1}{29}-\frac{1}{32}\right)\)
\(S=2\left(\frac{1}{2}-\frac{1}{32}\right)\)
\(S=2.\frac{15}{32}\)
\(S=\frac{15}{16}< 1\RightarrowĐPCM\)
Vậy \(S=\frac{15}{16}\)
\(S=2.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{29.32}\right)\)
\(S=2.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{29}-\frac{1}{32}\right)\)
\(S=2.\left(\frac{1}{2}-\frac{1}{32}\right)\)
\(S=1-\frac{1}{16}< 1\)
Vậy \(S< 1\)
Bài 1 :
S = \(\frac{6}{2.5}+\frac{6}{5.8}+...+\frac{6}{29.32}\)
= 2 . \(\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{29.32}\right)\)
= 2 . \(\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{29}-\frac{1}{32}\right)\)
= 2 . \(\left(\frac{1}{2}-\frac{1}{32}\right)\)= ....
a) Ý bạn là: \(S_1=\frac{3}{4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{40\cdot43}\)đúng không?
\(S_1=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}\)
\(S_1=1-\frac{1}{43}< 1\left(đpcm\right)\)
b) \(S_2=\frac{6}{2\cdot5}+\frac{6}{5.8}+\frac{6}{8\cdot11}+...+\frac{6}{29\cdot32}\)
=>\(\frac{S_2}{2}=\frac{3}{2\cdot5}+\frac{3}{5.8}+\frac{3}{8\cdot11}+...+\frac{3}{29\cdot32}\)
\(\frac{S_2}{2}=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{29}-\frac{1}{32}\)
\(\frac{S_2}{2}=\frac{1}{2}-\frac{1}{32}=\frac{16}{32}-\frac{1}{32}=\frac{15}{32}\)
=>\(S_2=\frac{15}{32}\cdot2=\frac{15}{16}< 1\left(đpcm\right)\)
S=6/2*5+6/5*8+...+6/29*32
=6/3*(3/2*5+3/5*8+...+3/29*32)
=2*(1/2-1/5+1/5-1/8+...+1/29-1/32)
=2*(1/2-1/32)=2*15/32
=15/16<1
S=6/2*5+6/5*8+...+6/29*32,c
=6/3*(3/2*5+3/5*8+...+3/29*32)
=2*(1/2-1/5+1/5-1/8+...+1/29-1/32)
=2*(1/2-1/32)
=2*15/32
=15/16<1
a) \(\frac{6}{2.5}+\frac{6}{5.8}+\frac{6}{8.11}+.......+\frac{6}{44.47}+\frac{6}{47.50}\)
\(=2\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+......+\frac{3}{44.47}+\frac{3}{47.50}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+......+\frac{1}{44}-\frac{1}{47}+\frac{1}{47}-\frac{1}{50}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{50}\right)\)
\(=1-\frac{1}{25}\)
\(=\frac{24}{25}\)
đặt \(A=\frac{1}{9.11}+\frac{1}{11.13}+........+\frac{1}{41.43}+\frac{1}{43.45}\)
\(2A=\frac{2}{9.11}+\frac{2}{11.13}+.......+\frac{2}{41.43}+\frac{2}{43.45}\)
\(2A=\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+......+\frac{1}{41}-\frac{1}{43}+\frac{1}{43}-\frac{1}{45}\)
\(2A=\frac{1}{9}-\frac{1}{45}\)
\(2A=\frac{4}{45}\)
\(A=\frac{4}{45}\div2\)
\(A=\frac{2}{45}\)
1/2.5+1/5.8+1/8.11+...+1/29.32 (khoảng cách từ 2-5;5-8;8-11;...;29-32 là 3) suy ra
=1/3(1/2-1/5+1/5-1/8+1/8-1/11+...+1/29-1/32) (-1/5+1/5;-1/8+1/8;-1/11+1/11=0) suy ra =1/3(1/2-1/32)=1/3.15/32=5/32
1/2.5+1/5.8+1/8.9+............+1/29.32
=1/2-1/5+1/5-1/8+...............+1/29-1/32
=1/2-1/32
=15/32
ai tích mk=>mk tích lại
S = 1/2.5 +1/5.8 +1/8.11+1/11.14+1/14.17+1/17.20
S=1/3.(1/2-1/5+1/5-1/8+1/8-1/11+1/11-1/14+1/14-1/17+1/17-1/20)
S=1/3.(1/2-1/20)
S=1/3.(10/20-1/20)
S=1/3.9/20
S= 3/20
k nha
\(\frac{12}{2.5}+\frac{12}{5.8}+\frac{12}{8.11}+...+\frac{12}{29.32}\)
\(=4.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{29.32}\right)\)
\(=4.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{29}-\frac{1}{32}\right)\)
\(=4.\left(\frac{1}{2}-\frac{1}{32}\right)\)
\(=4.\frac{15}{32}\)
\(=\frac{15}{8}\)
_Chúc bạn học tốt_
\(\frac{12}{2.5}+\frac{12}{5.8}+\frac{12}{8.11}+....+\frac{12}{29.32}\)
\(=4\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{29.32}\right)\)
\(=4\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{29}-\frac{1}{32}\right)\)
\(=4\left(\frac{1}{2}-\frac{1}{32}\right)\)
\(=4.\frac{15}{32}=\frac{15}{8}\)
\(S=\frac{6}{2.5}+\frac{6}{5.8}+\frac{6}{8.11}+...+\frac{6}{29.32}\)
\(S=2.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{29}-\frac{1}{32}\right)\)
\(S=2.\left(\frac{1}{2}-\frac{1}{32}\right)\)
\(S=2.\frac{15}{31}\Rightarrow S=\frac{15}{16}< 1\)
\(S=\frac{6}{2.5}+\frac{6}{5.8}+\frac{6}{8.11}+...+\frac{6}{29.32}\)
\(S=\left(\frac{1}{2}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{8}\right)+\left(\frac{1}{8}-\frac{1}{11}\right)+...+\left(\frac{1}{29}-\frac{1}{32}\right)\)
\(S=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{29}-\frac{1}{32}\)
\(S=\frac{1}{2}-\frac{1}{32}\)
\(S=\frac{17}{32}< 1\)