K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2016

Ta có: 3S = 3/2.5 + 3/5.8 + ... + 3/47.50

           3S = 1/2 - 1/5 + 1/5 - 1/8 + ... +1/47 - 1/50

           3S = 1/2 - 1/50

           3S = 12/25

           => S = 12/25 : 3 = 4/25 

9 tháng 3 2016

k, đây là dạng toán sai phân hữu hạn. 
----------- 
số hạng tổng quát là 1/[n.(n+3)] = (1/3).[(n+3)-n]/[n.(n+3)] = (1/3). [1/n - 1/(n+3)] 
=> 
A = (1/3).[(1/2 - 1/5) + (1/5 - 1/8) + (1/8 - 1/11) +...+(1/44 - 1/47) + (1/47 - 1/50)] 
= (1/3).[1/2 - 1/50] 
= (1/3). (24/50) = (1/3).(12/25) = 4/25 
vậy A = 4/25 
--------- 
good luck!

26 tháng 4 2018

A = \(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}+\frac{1}{95.98}\)

A = \(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\)

A = \(\frac{1}{2}-\frac{1}{98}\)

A = \(\frac{24}{49}\)

Vậy A = \(\frac{24}{49}\)

~~~
#Sunrise

26 tháng 4 2018

\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}+\frac{1}{95.98}\)

\(=\frac{1}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{92.95}+\frac{3}{95.98}\right)\)

\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}+\frac{1}{95}-\frac{1}{98}\right)\)

\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{98}\right)\)

\(=\frac{1}{3}.\frac{24}{49}=\frac{8}{49}\)

16 tháng 5 2016

S = 1/3 . (1/2 - 1/5 + 1/5 - 1/8 + ... + 1/17 - 1/20)

   = 1/3 . (1/2 - 1/20)

   = 1/3 . 9/20

   = 3/20

16 tháng 5 2016

\(3S=\frac{5-2}{2.5}+\frac{8-5}{5.8}+\frac{11-8}{8.11}+...+\frac{20-17}{17.20}\)

\(3S=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\)

\(S=\frac{9}{20}:3=\frac{3}{20}\)

8 tháng 6 2019

#)Giải :

\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{98.101}\)

\(\Rightarrow3A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{99.101}\)

\(\Rightarrow3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{99}-\frac{1}{101}\)

\(\Rightarrow3A=\frac{1}{2}-\frac{1}{101}\)

\(\Rightarrow3A=\frac{99}{202}\)

\(\Leftrightarrow A=\frac{33}{202}\)

8 tháng 6 2019

\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{101}\right)\)

\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{101}\right)\)

\(A=\frac{1}{3}.\frac{99}{202}=\frac{33}{202}\)

31 tháng 1 2019

\(S=\frac{6}{2.5}+\frac{6}{5.8}+.......+\frac{6}{29.32}\)

\(S=2\left(\frac{3}{2.5}+\frac{3}{5.8}+......+\frac{3}{29.32}\right)\)

\(S=2\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+......+\frac{1}{29}-\frac{1}{32}\right)\)

\(S=2\left(\frac{1}{2}-\frac{1}{32}\right)\)

\(S=2.\frac{15}{32}\)

\(S=\frac{15}{16}< 1\RightarrowĐPCM\)

Vậy \(S=\frac{15}{16}\)

28 tháng 3 2017

\(\frac{1}{3}.\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\right]\)

\(\frac{1}{3}\left[\frac{1}{2}-\frac{1}{20}\right]=\frac{1}{3}.\frac{9}{20}=\frac{3}{20}\)

mk đầu tiên đó

28 tháng 3 2017

=\(\frac{3}{20}=0,15\)

26 tháng 8 2020

\(\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{10300}=\frac{1}{x}\)

=> \(\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{100\cdot103}=\frac{1}{x}\)

=> \(\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{100\cdot103}\right)=\frac{1}{x}\)

=> \(\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{103}\right)=\frac{1}{x}\)

=> \(\frac{1}{3}\left(\frac{1}{2}-\frac{1}{103}\right)=\frac{1}{x}\)

=> \(\frac{101}{618}=\frac{1}{x}\)

=> \(101x=618\)

=> \(x=\frac{618}{101}\)

Vậy : ...

26 tháng 8 2020

\(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{10300}=\frac{1}{x}\)

\(\Rightarrow\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{100.103}=3.\frac{1}{x}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{103}=3.\frac{1}{x}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{103}=3.\frac{1}{x}\)

\(\Rightarrow\frac{1}{x}.3=\frac{101}{206}\)

\(\Rightarrow\frac{1}{x}=\frac{101}{618}\)

\(\Rightarrow x=\frac{618}{101}\)

14 tháng 2 2016

ủng hộ mình nha

14 tháng 2 2016

  \(\Rightarrow A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+....+\frac{1}{65}-\frac{1}{68}\right)\)

\(\Rightarrow A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{68}\right)=\frac{1}{2}\left(\frac{34}{68}-\frac{1}{68}\right)=\frac{1}{2}.\frac{33}{68}=\frac{33}{136}\)

 

4 tháng 5 2017

A=1/3x(1/2x5+1/5x8+......+1/95x98)

A=1/3x(1/2-1/5+1/5-1/8+.........+1/95-1/98)

A=1/3x(1/2-1/98)

A=1/3x24/49

A=8/49

4 tháng 5 2017

A =\(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}+\frac{1}{95.98}\)

A = \(\frac{1.3}{2.5.3}+\frac{1.3}{5.8.3}+\frac{1.3}{8.11.3}+...+\frac{1.3}{92.95.3}+\frac{1.3}{95.98.3}\)

A = \(\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{92.95}+\frac{3}{95.98}\right)\)

A =\(\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}+\frac{1}{95}-\frac{1}{98}\right)\)

A =\(\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{98}\right)\)

A =\(\frac{1}{3}.\frac{97}{98}\)

A =\(\frac{97}{294}\)