Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 100 - 7 . (x - 5) = 58
7. (x - 5) = 100 - 58
7. (x - 5) = 42
x - 5 = 42 : 7
x - 5 = 6
x = 6 + 5
x = 11
b)\(x+\frac{1}{3}=\frac{7}{26}.\frac{13}{6}\)
\(x+\frac{1}{3}=\frac{7}{12}\)
\(x=\frac{7}{12}-\frac{1}{3}\)
\(x=\frac{3}{12}=\frac{1}{4}\)
\(\frac{1}{3}.\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\right]\)
\(\frac{1}{3}\left[\frac{1}{2}-\frac{1}{20}\right]=\frac{1}{3}.\frac{9}{20}=\frac{3}{20}\)
mk đầu tiên đó
A = \(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}+\frac{1}{95.98}\)
A = \(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\)
A = \(\frac{1}{2}-\frac{1}{98}\)
A = \(\frac{24}{49}\)
Vậy A = \(\frac{24}{49}\)
~~~
#Sunrise
\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}+\frac{1}{95.98}\)
\(=\frac{1}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{92.95}+\frac{3}{95.98}\right)\)
\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}+\frac{1}{95}-\frac{1}{98}\right)\)
\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{98}\right)\)
\(=\frac{1}{3}.\frac{24}{49}=\frac{8}{49}\)
#)Giải :
\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{98.101}\)
\(\Rightarrow3A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{99.101}\)
\(\Rightarrow3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{99}-\frac{1}{101}\)
\(\Rightarrow3A=\frac{1}{2}-\frac{1}{101}\)
\(\Rightarrow3A=\frac{99}{202}\)
\(\Leftrightarrow A=\frac{33}{202}\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{101}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{101}\right)\)
\(A=\frac{1}{3}.\frac{99}{202}=\frac{33}{202}\)
\(\Rightarrow A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+....+\frac{1}{65}-\frac{1}{68}\right)\)
\(\Rightarrow A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{68}\right)=\frac{1}{2}\left(\frac{34}{68}-\frac{1}{68}\right)=\frac{1}{2}.\frac{33}{68}=\frac{33}{136}\)
A=...
<=>\(A=\frac{1}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{1}{17.20}\right)\)
<=>\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\right)\)
<=>\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{20}\right)\)
<=>\(A=\frac{1}{6}-\frac{1}{60}< \frac{1}{6}< 1\)
Câu hỏi của Nguyễn Ánh Ngân - Toán lớp 6 - Học toán với OnlineMath
Bạn tham khảo
\(\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+...+\frac{1}{x\cdot\left(x+3\right)}=\frac{101}{1504}\)
\(\Rightarrow\frac{1}{3}\cdot\left(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+...+\frac{3}{x\cdot\left(x+3\right)}\right)=\frac{101}{1504}\)
\(\Rightarrow\frac{1}{3}\cdot\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1504}\)
\(\Rightarrow\frac{1}{3}\cdot\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1504}\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1504}:\frac{1}{3}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1504}\cdot\frac{3}{1}=\frac{303}{1504}\)
- Đến đây tự tính nhé :v
Ta có: 3S = 3/2.5 + 3/5.8 + ... + 3/47.50
3S = 1/2 - 1/5 + 1/5 - 1/8 + ... +1/47 - 1/50
3S = 1/2 - 1/50
3S = 12/25
=> S = 12/25 : 3 = 4/25
k, đây là dạng toán sai phân hữu hạn.
-----------
số hạng tổng quát là 1/[n.(n+3)] = (1/3).[(n+3)-n]/[n.(n+3)] = (1/3). [1/n - 1/(n+3)]
=>
A = (1/3).[(1/2 - 1/5) + (1/5 - 1/8) + (1/8 - 1/11) +...+(1/44 - 1/47) + (1/47 - 1/50)]
= (1/3).[1/2 - 1/50]
= (1/3). (24/50) = (1/3).(12/25) = 4/25
vậy A = 4/25
---------
good luck!
\(\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{10300}=\frac{1}{x}\)
=> \(\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{100\cdot103}=\frac{1}{x}\)
=> \(\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{100\cdot103}\right)=\frac{1}{x}\)
=> \(\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{103}\right)=\frac{1}{x}\)
=> \(\frac{1}{3}\left(\frac{1}{2}-\frac{1}{103}\right)=\frac{1}{x}\)
=> \(\frac{101}{618}=\frac{1}{x}\)
=> \(101x=618\)
=> \(x=\frac{618}{101}\)
Vậy : ...
\(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{10300}=\frac{1}{x}\)
\(\Rightarrow\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{100.103}=3.\frac{1}{x}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{103}=3.\frac{1}{x}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{103}=3.\frac{1}{x}\)
\(\Rightarrow\frac{1}{x}.3=\frac{101}{206}\)
\(\Rightarrow\frac{1}{x}=\frac{101}{618}\)
\(\Rightarrow x=\frac{618}{101}\)