K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2023

\(A=2+2^2+...+2^{20}\)

\(2A=2^2+2^3+...+2^{21}\)

\(2A-A=2^2+2^3+...+2^{21}-2-2^2-...-2^{20}\)

\(A=2^{21}-2\)

___________

\(B=5+5^2+...+5^{50}\)

\(5B=5^2+5^3+...+5^{51}\)

\(5B-B=5^2+5^3+...+5^{51}-5-5^2-...-5^{50}\)

\(4B=5^{51}-5\)

\(B=\dfrac{5^{51}-5}{4}\)

___________

\(C=1+3+3^2+...+3^{100}\)

\(3C=3+3^2+...+3^{101}\)

\(3C-C=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}\)

\(2C=3^{101}-1\)

\(C=\dfrac{3^{101}-1}{2}\)

14 tháng 10 2023

2A= 2(2+22+23+...+219+220)

2A= 22+23+24+...+220+221

2A-A=(22+23+24+...+220+221)-(2+22+23+...+219+220)

A=221-2

Vậy A=221-2

Làm tương tự nhee

24 tháng 7 2017

\(A=2^0+2^1+2^2\)\(+2^3+...+\)\(2^{50}\)

\(2A=2+2^2+2^3+...+2^{51}\)

\(2A-A=A=2^{51}-2^0\)

\(B=5+5^2+5^3+...+5^{99}+5^{100}\)

\(5B=5^2+5^3+5^4+...+5^{100}+5^{101}\)

\(5B-B=4B=5^{101}-5\)

\(B=\frac{5^{101}-5}{4}\)

\(C=3-3^2+3^3-3^4+...+\)\(3^{2007}-3^{2008}+3^{2009}-3^{2010}\)

\(3C=3^2-3^3+3^4-3^5+...-3^{2008}+3^{2009}-3^{2010}+3^{2011}\)

\(3C+C=4C=3^{2011}+3\)

\(C=\frac{3^{2011}+3}{4}\)

\(S_{100}=5+5\times9+5\times9^2+5\times9^3+...+5\times9^{99}\)

\(S_{100}=5\times\left(1+9+9^2+9^3+...+9^{99}\right)\)

\(9S_{100}=5\times\left(9+9^2+9^3+...+9^{99}+9^{100}\right)\)

\(9S_{100}-S_{100}=8S_{100}=5\times\left(9^{100}-1\right)\)

\(S_{100}=\frac{5\times\left(9^{100}-1\right)}{8}\)

24 tháng 10 2023

A=20+21+22+23+...++23+...+250250

2�=2+22+23+...+2512A=2+22+23+...+251

2�−�=�=251−202AA=A=25120

�=5+52+53+...+599+5100B=5+52+53+...+599+5100

5�=52+53+54+...+5100+51015B=52+53+54+...+5100+5101

5�−�=4�=5101−55BB=4B=51015

�=5101−54B=451015

�=3−32+33−34+...+C=332+3334+...+32007−32008+32009−320103200732008+3200932010

3�=32−33+34−35+...−32008+32009−32010+320113C=3233+3435+...32008+3200932010+32011

3�+�=4�=32011+33C+C=4C=32011+3

�=32011+34C=432011+3

�100=5+5×9+5×92+5×93+...+5×999S100=5+5×9+5×92+5×93+...+5×999

�100=5×(1+9+92+93+...+999)S100=5×(1+9+92+93+...+999)

9�100=5×(9+92+93+...+999+9100)9S100=5×(9+92+93+...+999+9100)

9�100−�100=8�100=5×(9100−1)9S100S100=8S100=5×(91001)

�100=5×(9100−1)8S100=85×(91001)

18 tháng 7 2016

a) \(A=1+2+2^2+2^3+...+2^{60}\)

=>\(2A=2+2^2+2^3+2^4+...+2^{61}\)

=>\(2A-A=\left(2+2^2+2^3+2^4+...+2^{61}\right)-\left(1+2+2^2+2^3+...+2^{60}\right)\)

=>\(A=2^{61}-1\)

b)  \(B=1+3+3^2+3^3+...+3^{46}\)

=>\(3B=3+3^2+3^3+3^4+...+3^{47}\)

=>\(3B-B=\left(3+3^2+3^3+3^4+...+3^{47}\right)-\left(1+3+3^2+3^3+...+3^{46}\right)\)

=>\(2A=3^{47}-1\)

=>\(B=\frac{3^{47}-1}{2}\)

c) \(C=1+5^2+5^4+...+5^{200}\)

=>\(5^2C=5^2+5^4+5^6+...+5^{202}\)

=>\(25C=5^2+5^4+5^6+...+5^{202}\)

=>\(25C-C=\left(5^2+5^4+5^6+...+5^{202}\right)-\left(1+5^2+5^4+...+5^{200}\right)\)

=>\(24C=5^{202}-1\)

=>\(C=\frac{5^{202}-1}{24}\)

18 tháng 7 2016

a) A = \(1+2+2^2+2^3+...+2^{60}\)

2A = \(2.\left(1+2+2^2+2^3+...+2^{60}\right)\)

2A = \(2+2^2+2^3+2^4+...+2^{61}\)

2A - A = \(\left(2+2^2+2^3+2^4+...+2^{61}\right)\)\(\left(1+2+2^2+2^3+...+2^{60}\right)\)

A = \(2^{61}-1\)

b)B = \(1+3+3^2+3^3+...+3^{46}\)

3B = \(3.\left(1+3+3^2+3^3+...+3^{46}\right)\)

3B = \(3+3^2+3^3+3^4+...+3^{47}\)

3B - B = \(\left(3+3^2+3^3+3^4+...+3^{47}\right)\)\(\left(1+3+3^2+3^3+...+3^{46}\right)\)

2B = \(3^{47}-1\)

B = \(\left(3^{47}-1\right):2\)

12 tháng 1 2018

2A=2+2^2+....+2^51

A=2A-A=(2+2^2+...+2^51)-(1+2+2^2+...+2^50)=2^51-1

5B=5^2+5^3+.....+5^101

4B=5B-B=(5^2+5^3+....+5^101)-(5+5^2+...+5^100)=5^101-5

=> B=(5^101-5)/4

Tk mk nha

2 tháng 10 2015

bài A và B nè bạn!

A=1+3+32+...+3100

3A=3+32+33+...+3101

=>3A+1=1+3+32+...+3100+3101=A+3101

=>3A-A=3101-1

2A=3101-1

A=(3101-1)/2

B=1+4+42+...+450

4B=4+42+...+451

4B+1=1+4+42+...+450+451=B+451

=>4B-B=451-1

3B=451-1

B=(451-1)/3

 

9 tháng 10 2015

Chơi câu khó nhất 

D = 4 + 42 + 43 + ... + 4n

4D = 42 + 43 + ... + 4n+1

3D = 4n+1 - 4

D = \(\frac{4^{n+1}-4}{3}\)

12 tháng 2 2017

a. Ta có:

\(72^{45}-72^{44}=72^{44}.\left(72-1\right)=72^{44}.71\)

\(72^{44}-72^{43}=72^{43}.\left(72-1\right)=72^{43}.71\)

\(72^{44}.71>72^{43}.71\)

\(\Rightarrow72^{45}-72^{44}>72^{44}-72^{43}\)

12 tháng 2 2017

\(A = 1 + 2 + 2^2 + 2^3+ ... + 2^{63}\)

\(2A=2+2^2+2^3+...+2^{63}+2^{64}\)

\(2A-A=2+2^2+2^3+...+2^{63}+2^{64}-\left(1+2+2^2+2^3+...+2^{63}\right)\)

\(\Rightarrow A=2^{64}-1\)

13 tháng 12 2015

Ngô Phúc Dương Chỉ có trả lời f đã được 2 **** rùi

28 tháng 9 2018

a) \(A=2+2^2+2^3+....+2^{100}\)

\(2A=2^2+2^3+2^4+....+2^{101}\)

\(2A-A=\left(2^2+2^3+2^4+....+2^{101}\right)-\left(2+2^2+....+2^{100}\right)\)

\(A=2^{101}-2\)

B) \(B=1+3+3^2+3^3+...+3^{2009}\)

\(3B=3+3^2+3^3+3^4+...+3^{2010}\)

\(3B-B=\left(3+3^2+3^3+3^4+...+3^{2010}\right)-\left(1+3+3^2+...+3^{2009}\right)\)

\(2B=3^{2010}-1\)

\(B=\frac{3^{2010}-1}{2}\)

C) \(C=1+5+5^2+....+5^{1998}\)

\(5C=5+5^2+5^3+...+5^{1999}\)

\(5C-C=\left(5+5^2+5^3+...+5^{1999}\right)-\left(1+5+5^2+...+5^{1998}\right)\)

\(4C=5^{1999}-1\)

\(C=\frac{5^{1999}-1}{4}\)

D) \(D=4+4^2+4^3+...+4^n\)

\(4D=4^2+4^3+4^4+...+4^{n+1}\)

\(4D-D=\left(4^2+4^3+4^4+...+4^{n+1}\right)-\left(4+4^2+4^3+...+4^n\right)\)

\(3D=-4\)

\(D=\frac{-4}{3}\)

Ý D mk ko bít đúng ko
hok tốt k mk nhé

19 tháng 6 2020

\(A=2+2^2+2^3+...+2^{100}\)

\(2A=2^2+2^3+...+2^{101}\)

\(2A-A=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)

\(A=2^{101}-2\)'

\(B=1+3+3^2+3^3+...+3^{2009}\)

\(3B=3+3^2+3^3+...+3^{2010}\)

\(3B-B=3^{2010}-1\)

\(2B=3^{2010}-1\)

\(B=\frac{3^{2010}-1}{2}\)

\(C=1+5+5^2+5^3...+5^{1998}\)

\(5C=5+5^2+...+5^{1999}\)

\(5C-C=5^{1999}-1\)

\(4A=5^{1999}-1\)

\(A=\frac{5^{1999}-1}{4}\)

\(D=4+4^2+4^3+...+4^n\)

\(4D=4^2+4^3+...+4^{n+1}\)

\(4D-D=4^{n+1}-4\)

\(3D=4^{n+1}-4\)

\(D=\frac{4^{n+1}-4}{3}\)

4 tháng 8 2020

  34.x+4 = 81x+3 <=>  34.x+4 = 33.x+9  <=> 4.x+4 = 3.x+9 <=> 4.x - 3.x = 9-4 <=> x=5

5 tháng 8 2020

Mk chỉ làm bài tính tổng thôi nhé!!!

A= 1+2+2^2+2^3+...+2^50

A.2= 2+2^2+2^3+...+2^50+2^51

A.2-A= (2+2^2+2^3+...+2^50+2^51)-(1+2+2^2+2^3+2^4+...+2^50)

A= 2^51-1

Vậy A= 2^51-1

B= 5+5^2+5^3+5^4+5^5+...+5^200

B.5= 5^2+5^3+5^4+...+5^200+5^201

B.5-B=5^201-5

B.4= 5^201-5

B= (5^201-5):4

Vậy B= (5^201-5):4