Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2^0+2^1+2^2\)\(+2^3+...+\)\(2^{50}\)
\(2A=2+2^2+2^3+...+2^{51}\)
\(2A-A=A=2^{51}-2^0\)
\(B=5+5^2+5^3+...+5^{99}+5^{100}\)
\(5B=5^2+5^3+5^4+...+5^{100}+5^{101}\)
\(5B-B=4B=5^{101}-5\)
\(B=\frac{5^{101}-5}{4}\)
\(C=3-3^2+3^3-3^4+...+\)\(3^{2007}-3^{2008}+3^{2009}-3^{2010}\)
\(3C=3^2-3^3+3^4-3^5+...-3^{2008}+3^{2009}-3^{2010}+3^{2011}\)
\(3C+C=4C=3^{2011}+3\)
\(C=\frac{3^{2011}+3}{4}\)
\(S_{100}=5+5\times9+5\times9^2+5\times9^3+...+5\times9^{99}\)
\(S_{100}=5\times\left(1+9+9^2+9^3+...+9^{99}\right)\)
\(9S_{100}=5\times\left(9+9^2+9^3+...+9^{99}+9^{100}\right)\)
\(9S_{100}-S_{100}=8S_{100}=5\times\left(9^{100}-1\right)\)
\(S_{100}=\frac{5\times\left(9^{100}-1\right)}{8}\)
A=20+21+22+23+...++23+...+250250
2�=2+22+23+...+2512A=2+22+23+...+251
2�−�=�=251−202A−A=A=251−20
�=5+52+53+...+599+5100B=5+52+53+...+599+5100
5�=52+53+54+...+5100+51015B=52+53+54+...+5100+5101
5�−�=4�=5101−55B−B=4B=5101−5
�=5101−54B=45101−5
�=3−32+33−34+...+C=3−32+33−34+...+32007−32008+32009−3201032007−32008+32009−32010
3�=32−33+34−35+...−32008+32009−32010+320113C=32−33+34−35+...−32008+32009−32010+32011
3�+�=4�=32011+33C+C=4C=32011+3
�=32011+34C=432011+3
�100=5+5×9+5×92+5×93+...+5×999S100=5+5×9+5×92+5×93+...+5×999
�100=5×(1+9+92+93+...+999)S100=5×(1+9+92+93+...+999)
9�100=5×(9+92+93+...+999+9100)9S100=5×(9+92+93+...+999+9100)
9�100−�100=8�100=5×(9100−1)9S100−S100=8S100=5×(9100−1)
�100=5×(9100−1)8S100=85×(9100−1)
a) \(A=1+2+2^2+2^3+...+2^{60}\)
=>\(2A=2+2^2+2^3+2^4+...+2^{61}\)
=>\(2A-A=\left(2+2^2+2^3+2^4+...+2^{61}\right)-\left(1+2+2^2+2^3+...+2^{60}\right)\)
=>\(A=2^{61}-1\)
b) \(B=1+3+3^2+3^3+...+3^{46}\)
=>\(3B=3+3^2+3^3+3^4+...+3^{47}\)
=>\(3B-B=\left(3+3^2+3^3+3^4+...+3^{47}\right)-\left(1+3+3^2+3^3+...+3^{46}\right)\)
=>\(2A=3^{47}-1\)
=>\(B=\frac{3^{47}-1}{2}\)
c) \(C=1+5^2+5^4+...+5^{200}\)
=>\(5^2C=5^2+5^4+5^6+...+5^{202}\)
=>\(25C=5^2+5^4+5^6+...+5^{202}\)
=>\(25C-C=\left(5^2+5^4+5^6+...+5^{202}\right)-\left(1+5^2+5^4+...+5^{200}\right)\)
=>\(24C=5^{202}-1\)
=>\(C=\frac{5^{202}-1}{24}\)
a) A = \(1+2+2^2+2^3+...+2^{60}\)
2A = \(2.\left(1+2+2^2+2^3+...+2^{60}\right)\)
2A = \(2+2^2+2^3+2^4+...+2^{61}\)
2A - A = \(\left(2+2^2+2^3+2^4+...+2^{61}\right)\)- \(\left(1+2+2^2+2^3+...+2^{60}\right)\)
A = \(2^{61}-1\)
b)B = \(1+3+3^2+3^3+...+3^{46}\)
3B = \(3.\left(1+3+3^2+3^3+...+3^{46}\right)\)
3B = \(3+3^2+3^3+3^4+...+3^{47}\)
3B - B = \(\left(3+3^2+3^3+3^4+...+3^{47}\right)\)- \(\left(1+3+3^2+3^3+...+3^{46}\right)\)
2B = \(3^{47}-1\)
B = \(\left(3^{47}-1\right):2\)
2A=2+2^2+....+2^51
A=2A-A=(2+2^2+...+2^51)-(1+2+2^2+...+2^50)=2^51-1
5B=5^2+5^3+.....+5^101
4B=5B-B=(5^2+5^3+....+5^101)-(5+5^2+...+5^100)=5^101-5
=> B=(5^101-5)/4
Tk mk nha
bài A và B nè bạn!
A=1+3+32+...+3100
3A=3+32+33+...+3101
=>3A+1=1+3+32+...+3100+3101=A+3101
=>3A-A=3101-1
2A=3101-1
A=(3101-1)/2
B=1+4+42+...+450
4B=4+42+...+451
4B+1=1+4+42+...+450+451=B+451
=>4B-B=451-1
3B=451-1
B=(451-1)/3
Chơi câu khó nhất
D = 4 + 42 + 43 + ... + 4n
4D = 42 + 43 + ... + 4n+1
3D = 4n+1 - 4
D = \(\frac{4^{n+1}-4}{3}\)
a. Ta có:
\(72^{45}-72^{44}=72^{44}.\left(72-1\right)=72^{44}.71\)
\(72^{44}-72^{43}=72^{43}.\left(72-1\right)=72^{43}.71\)
Vì \(72^{44}.71>72^{43}.71\)
\(\Rightarrow72^{45}-72^{44}>72^{44}-72^{43}\)
\(A = 1 + 2 + 2^2 + 2^3+ ... + 2^{63}\)
\(2A=2+2^2+2^3+...+2^{63}+2^{64}\)
\(2A-A=2+2^2+2^3+...+2^{63}+2^{64}-\left(1+2+2^2+2^3+...+2^{63}\right)\)
\(\Rightarrow A=2^{64}-1\)
a) \(A=2+2^2+2^3+....+2^{100}\)
\(2A=2^2+2^3+2^4+....+2^{101}\)
\(2A-A=\left(2^2+2^3+2^4+....+2^{101}\right)-\left(2+2^2+....+2^{100}\right)\)
\(A=2^{101}-2\)
B) \(B=1+3+3^2+3^3+...+3^{2009}\)
\(3B=3+3^2+3^3+3^4+...+3^{2010}\)
\(3B-B=\left(3+3^2+3^3+3^4+...+3^{2010}\right)-\left(1+3+3^2+...+3^{2009}\right)\)
\(2B=3^{2010}-1\)
\(B=\frac{3^{2010}-1}{2}\)
C) \(C=1+5+5^2+....+5^{1998}\)
\(5C=5+5^2+5^3+...+5^{1999}\)
\(5C-C=\left(5+5^2+5^3+...+5^{1999}\right)-\left(1+5+5^2+...+5^{1998}\right)\)
\(4C=5^{1999}-1\)
\(C=\frac{5^{1999}-1}{4}\)
D) \(D=4+4^2+4^3+...+4^n\)
\(4D=4^2+4^3+4^4+...+4^{n+1}\)
\(4D-D=\left(4^2+4^3+4^4+...+4^{n+1}\right)-\left(4+4^2+4^3+...+4^n\right)\)
\(3D=-4\)
\(D=\frac{-4}{3}\)
Ý D mk ko bít đúng ko
hok tốt k mk nhé
\(A=2+2^2+2^3+...+2^{100}\)
\(2A=2^2+2^3+...+2^{101}\)
\(2A-A=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)
\(A=2^{101}-2\)'
\(B=1+3+3^2+3^3+...+3^{2009}\)
\(3B=3+3^2+3^3+...+3^{2010}\)
\(3B-B=3^{2010}-1\)
\(2B=3^{2010}-1\)
\(B=\frac{3^{2010}-1}{2}\)
\(C=1+5+5^2+5^3...+5^{1998}\)
\(5C=5+5^2+...+5^{1999}\)
\(5C-C=5^{1999}-1\)
\(4A=5^{1999}-1\)
\(A=\frac{5^{1999}-1}{4}\)
\(D=4+4^2+4^3+...+4^n\)
\(4D=4^2+4^3+...+4^{n+1}\)
\(4D-D=4^{n+1}-4\)
\(3D=4^{n+1}-4\)
\(D=\frac{4^{n+1}-4}{3}\)
34.x+4 = 81x+3 <=> 34.x+4 = 33.x+9 <=> 4.x+4 = 3.x+9 <=> 4.x - 3.x = 9-4 <=> x=5
Mk chỉ làm bài tính tổng thôi nhé!!!
A= 1+2+2^2+2^3+...+2^50
A.2= 2+2^2+2^3+...+2^50+2^51
A.2-A= (2+2^2+2^3+...+2^50+2^51)-(1+2+2^2+2^3+2^4+...+2^50)
A= 2^51-1
Vậy A= 2^51-1
B= 5+5^2+5^3+5^4+5^5+...+5^200
B.5= 5^2+5^3+5^4+...+5^200+5^201
B.5-B=5^201-5
B.4= 5^201-5
B= (5^201-5):4
Vậy B= (5^201-5):4
\(A=2+2^2+...+2^{20}\)
\(2A=2^2+2^3+...+2^{21}\)
\(2A-A=2^2+2^3+...+2^{21}-2-2^2-...-2^{20}\)
\(A=2^{21}-2\)
___________
\(B=5+5^2+...+5^{50}\)
\(5B=5^2+5^3+...+5^{51}\)
\(5B-B=5^2+5^3+...+5^{51}-5-5^2-...-5^{50}\)
\(4B=5^{51}-5\)
\(B=\dfrac{5^{51}-5}{4}\)
___________
\(C=1+3+3^2+...+3^{100}\)
\(3C=3+3^2+...+3^{101}\)
\(3C-C=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}\)
\(2C=3^{101}-1\)
\(C=\dfrac{3^{101}-1}{2}\)
2A= 2(2+22+23+...+219+220)
2A= 22+23+24+...+220+221
2A-A=(22+23+24+...+220+221)-(2+22+23+...+219+220)
A=221-2
Vậy A=221-2
Làm tương tự nhee