Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
oh no bài thứ nhất là dạng chứng minh cs đúng ko ,
ko thể nào là dạng tìm a,b,c đc-.-
Lời giải:
$x^2-2xy+6y^2-12x+2y+41=0$
$\Leftrightarrow (x^2-2xy+y^2)+5y^2-12x+2y+41=0$
$\Leftrightarrow (x-y)^2-12(x-y)+36+5y^2-10y+5=0$
$\Leftrightarrow (x-y-6)^2+5(y-1)^2=0$
Vì $(x-y-6)^2\geq 0; (y-1)^2\geq 0$ với mọi $x,y$
Do đó để tổng trên bằng $0$ thì bản thân mỗi số trên bằng $0$
$\Rightarrow x-y-6=y-1=0$
$\Rightarrow y=1; x=7$
$\Rightarrow P=2021(10-7-2)^{2021}-8(6-7)^{2022}$
$=2021-8=2013$
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{2022}\)
\(\Rightarrow\dfrac{yz+zx+xy}{xyz}=\dfrac{1}{x+y+z}\)
\(\Rightarrow\left(yz+zx+xy\right)\left(x+y+z\right)=xyz\)
\(\Rightarrow xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+3xyz-xyz=0\)
\(\Rightarrow xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+2xyz=0\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Rightarrow x=-y\) hoặc \(y=-z\) hoặc \(z=-x\).
-Đến đây thôi bạn, câu hỏi sai rồi ạ.
tìm x y z thoả mãn đẳng thức 1/x2022+1/y2022+1/z2022=1/x2021+1/y2021+1/z2021=1/x2020+1/y2020+1/z2020
\(a^{2020}+b^{2020}=a^{2021}+b^{2021}=a^{2022}+b^{2022}\) (1)
Ta có : \(a^{2021}+b^{2021}=a^{2022}+b^{2022}\)
\(\Leftrightarrow a^{2021}+b^{2021}=a^{2022}+a^{2021}b+b^{2022}+ab^{2021}-a^{2021}b-ab^{2021}\)
\(\Leftrightarrow a^{2021}+b^{2021}=a^{2021}\left(a+b\right)+b^{2021}\left(a+b\right)-ab\left(a^{2020}+b^{2020}\right)\)
\(\Leftrightarrow a^{2021}+b^{2021}=\left(a^{2021}+b^{2021}\right)\left(a+b\right)-ab\left(a^{2020}+b^{2020}\right)\)
\(\Leftrightarrow a+b-ab=1\)
\(\Leftrightarrow\left(1-b\right)\left(a-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-1=0\\1-b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=1\\b=1\end{cases}}}\)
(+) Thay \(a=1\)vào \(\left(1\right)\)ta được :
\(b^{2020}=b^{2021}=b^{2022}\Leftrightarrow\orbr{\begin{cases}b=0\\b=1\end{cases}\Leftrightarrow}b=1\left(b>0\right)\)
(+) Thay \(b=1\)vào (1) ta được :
\(a^{2020}=a^{2021}=a^{2022}\Leftrightarrow\orbr{\begin{cases}a=1\\a=0\end{cases}\Leftrightarrow}a=1\left(a>0\right)\)
\(\Rightarrow a=b=1\)\(\Rightarrow a^{2020}+b^{2021}=1^{2020}+1^{2021}=2\)
TH1: (x-2021)^2022=0 và |x-2022|^2022=1
=>x-2021=0 và (x-2022=1 hoặc x-2022=-1)
=>x=2021
TH2: (x-2021)^2022=1 và |x-2022|^2022=0
=>x-2022=0 và (x-2021=1 hoặc x-2021=-1)
=>x=2022
khoảng cách : `1`
số số hạng là :`(2050-2021):1+1=30`
tổng là : `(2050 +2021) . 30 :2=61065`
giup tớ