K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2023

khoảng cách : `1`

số số hạng là  :`(2050-2021):1+1=30`

tổng là : `(2050 +2021) . 30 :2=61065`

16 tháng 2 2023

giup tớ 

12 tháng 3 2022

-Mình làm tắt được không bạn :/?

12 tháng 3 2022

-Sợ bạn không hiểu thôi.

25 tháng 2 2022

oh no bài thứ nhất là dạng chứng minh cs đúng ko ,

ko thể nào là dạng tìm a,b,c đc-.-

25 tháng 2 2022

nó là 1 bài mà

AH
Akai Haruma
Giáo viên
11 tháng 11 2023

Lời giải:
$x^2-2xy+6y^2-12x+2y+41=0$

$\Leftrightarrow (x^2-2xy+y^2)+5y^2-12x+2y+41=0$

$\Leftrightarrow (x-y)^2-12(x-y)+36+5y^2-10y+5=0$

$\Leftrightarrow (x-y-6)^2+5(y-1)^2=0$

Vì $(x-y-6)^2\geq 0; (y-1)^2\geq 0$ với mọi $x,y$

Do đó để tổng trên bằng $0$ thì bản thân mỗi số trên bằng $0$

$\Rightarrow x-y-6=y-1=0$

$\Rightarrow y=1; x=7$

$\Rightarrow P=2021(10-7-2)^{2021}-8(6-7)^{2022}$

$=2021-8=2013$

19 tháng 4 2022

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{2022}\)

\(\Rightarrow\dfrac{yz+zx+xy}{xyz}=\dfrac{1}{x+y+z}\)

\(\Rightarrow\left(yz+zx+xy\right)\left(x+y+z\right)=xyz\)

\(\Rightarrow xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+3xyz-xyz=0\)

\(\Rightarrow xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+2xyz=0\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Rightarrow x=-y\) hoặc \(y=-z\) hoặc \(z=-x\).

-Đến đây thôi bạn, câu hỏi sai rồi ạ.

 

 

14 tháng 6 2020

\(a^{2020}+b^{2020}=a^{2021}+b^{2021}=a^{2022}+b^{2022}\)       (1)

Ta có : \(a^{2021}+b^{2021}=a^{2022}+b^{2022}\)

\(\Leftrightarrow a^{2021}+b^{2021}=a^{2022}+a^{2021}b+b^{2022}+ab^{2021}-a^{2021}b-ab^{2021}\)

\(\Leftrightarrow a^{2021}+b^{2021}=a^{2021}\left(a+b\right)+b^{2021}\left(a+b\right)-ab\left(a^{2020}+b^{2020}\right)\)

\(\Leftrightarrow a^{2021}+b^{2021}=\left(a^{2021}+b^{2021}\right)\left(a+b\right)-ab\left(a^{2020}+b^{2020}\right)\)

\(\Leftrightarrow a+b-ab=1\)

\(\Leftrightarrow\left(1-b\right)\left(a-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a-1=0\\1-b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=1\\b=1\end{cases}}}\)

(+) Thay \(a=1\)vào \(\left(1\right)\)ta được : 

\(b^{2020}=b^{2021}=b^{2022}\Leftrightarrow\orbr{\begin{cases}b=0\\b=1\end{cases}\Leftrightarrow}b=1\left(b>0\right)\)

(+) Thay \(b=1\)vào (1) ta được : 

\(a^{2020}=a^{2021}=a^{2022}\Leftrightarrow\orbr{\begin{cases}a=1\\a=0\end{cases}\Leftrightarrow}a=1\left(a>0\right)\)

\(\Rightarrow a=b=1\)\(\Rightarrow a^{2020}+b^{2021}=1^{2020}+1^{2021}=2\)

TH1: (x-2021)^2022=0 và |x-2022|^2022=1

=>x-2021=0 và (x-2022=1 hoặc x-2022=-1)

=>x=2021

TH2: (x-2021)^2022=1 và |x-2022|^2022=0

=>x-2022=0 và (x-2021=1 hoặc x-2021=-1)

=>x=2022