K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2022

oh no bài thứ nhất là dạng chứng minh cs đúng ko ,

ko thể nào là dạng tìm a,b,c đc-.-

25 tháng 2 2022

nó là 1 bài mà

26 tháng 11 2018

Ta có \(M=\dfrac{b+c}{a}+1+\dfrac{c+a}{b}+1+\dfrac{a+b}{c}+1-3\)

\(=\dfrac{a+b+c}{a}+\dfrac{a+b+c}{b}+\dfrac{a+b+c}{c}-3\)

\(=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)-3\)

\(=-3\)

25 tháng 3 2021

Câu 2 

1, a, \(x^2+9xy+8y^2-8y-x=x^2+xy+8xy+8y^2-\left(8y+x\right)\)

\(=\left(x+y\right)\left(8y+x\right)-\left(8y+x\right)=\left(8y+x\right)\left(x+y-1\right)\)

b, \(x^3+5x-6=x^3-x^2+x^2-x+6x-6\)

\(=x^2\left(x-1\right)+x\left(x-1\right)+6\left(x-1\right)=\left(x-1\right)\left(x^2+x+6\right)\)

 

Câu 2:

b) \(x^3+5x-6=x^3+x^2+6x-x^2-x-6\)         \(=x\left(x^2+x+6\right)-\left(x^2+x+6\right)\) \(=\left(x-1\right)\left(x^2+x+6\right)\) 

NV
20 tháng 1 2019

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\)

\(\Leftrightarrow\left(a+b+c\right)\left(\dfrac{ab+ac+bc}{abc}\right)=1\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+ac+bc\right)-abc=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+ac+bc\right)+c\left(ab+ac+bc\right)-abc=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+ac+bc\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+ac+bc+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-b\\a=-c\\b=-c\end{matrix}\right.\)

Đến đây thì nghi ngờ bạn chép sai đề biểu thức R, lẽ ra phải là dấu nhân mới tính được, nếu ko thì kết quả vẫn còn 2 ẩn

\(R=\left(a^{2017}+b^{2017}\right)\left(b^{2019}+c^{2019}\right)\left(c^{2021}+a^{2021}\right)\)

Thế này mới chính xác, kết quả \(R=0\)

28 tháng 9 2017

1/(a+b) + 1/(b+c) + 1/(c+a) = 4/(a+b+c)

=> [1/(a+b) + 1/(b+c) + 1/(c+a)](a+b+c) = 4

=> 3 + c/(a+b) +a/(b+c) + b/(c+a) = 4

=> [3 + c/(a+b) + a/(b+c) + b/(c+a)](a+b+c) = 4(a+b+c)

=> 3(a+b+c) + c + c2(a+b) + a + a2(b+c) + b + b2(c+a) = 4(a+b+c)

=> a2(b+c) + b2(c+a) + c2(a+b) = 0

Ko cần cảm ơn, mik giúp bạn chỉ vì mik đang sắp rơi vào danh sách học sinh dốt của hoc24h ^^

18 tháng 7 2017

\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)

Áp dụng tính chất dãy tủ số bằng nhau ta có:

\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}=\dfrac{a+b+b+c+c+a}{a+b+c}\)

= \(\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\c+a=2b\end{matrix}\right.\)

M = \(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)

M = \(\left(\dfrac{a+b}{b}\right)\left(\dfrac{b+c}{c}\right)\left(\dfrac{a+c}{a}\right)\)

M = \(\dfrac{2c}{b}.\dfrac{2a}{c}.\dfrac{2b}{a}\)

M = \(\dfrac{8abc}{abc}=8\)

12 tháng 1 2018

Bài 1 rút gọn bc tự làm :

\(B=\dfrac{3y^3-7y^2+5y-1}{2y^3-y^2-4y+3}\)

\(B=\dfrac{3x^3-3y^2-4y^2+4y+y-1}{2y^3-2y^2+y^2-y+3y-3}\)

\(B=\dfrac{3y^2\left(y-1\right)-4y\left(y-1\right)+\left(y-1\right)}{2y^2\left(y-1\right)+y\left(y-1\right)-3\left(y-1\right)}\)

\(B=\dfrac{\left(3y^2-4y+1\right)\left(y-1\right)}{\left(2y^2+y-3\right)\left(y-1\right)}\)

\(B=\dfrac{3y^2-3y-y+1}{2y^2-2y+3y-3}=\dfrac{3y\left(y-1\right)-\left(y-1\right)}{2y\left(y-1\right)+3\left(y-1\right)}\)

\(B=\dfrac{\left(3y-1\right)\left(y-1\right)}{\left(3y+2\right)\left(y-1\right)}=\dfrac{3y-1}{3y+2}\)

12 tháng 1 2018

Bài 2 )

a ) \(x+\dfrac{1}{x}=3\)

\(\Leftrightarrow x^2+2x\dfrac{1}{x}+\dfrac{1}{x^2}=9\)

\(\Leftrightarrow x^2+\dfrac{1}{x^2}=1\)

b ) \(\left(x+\dfrac{1}{x}\right)^3=27\)

\(\Leftrightarrow x^3+\dfrac{1}{x^3}+\dfrac{3}{x}+3x=27\)

\(\Leftrightarrow x^3+\dfrac{1}{x^3}+3\left(\dfrac{1}{x}+x\right)=27\)

\(\Leftrightarrow x^3+\dfrac{1}{x^3}=18\)