K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
9 tháng 3 2021

\(\hept{\begin{cases}x-1=a\\y-2=b\\z-3=c\end{cases}}\Rightarrow a+b+c=x+y+z-6=0\).

Ta có: 

\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow a+b=0\)hoặc \(b+c=0\)hoặc \(c+a=0\).

\(\Leftrightarrow\hept{\begin{cases}a=-b\\c=0\end{cases}}\)hoặc \(\hept{\begin{cases}b=-c\\a=0\end{cases}}\)hoặc \(\hept{\begin{cases}c=-a\\b=0\end{cases}}\).

Khi đó \(P=a^{2021}+b^{2021}+c^{2021}=0\).

7 tháng 8 2020

\(x^3+y^3+z^3+6=3\left(x^2+y^2+z^2\right)\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)+3xyz+6=3\left(x^2+y^2+z^2\right)\)Mà x+y+z=3

\(\Rightarrow3\left(x^2+y^2+z^2-xy-xz-yz\right)+3xyz+6=3\left(x^2+y^2+z^2\right)\)

\(\Rightarrow x^2+y^2+z^2-xy-yz-xz+xyz+2=x^2+y^2+z^2\)

\(\Rightarrow xyz-xy-yz-xz+2=0\Rightarrow\left(xyz-xy\right)-\left(yz-y\right)-\left(xz-x\right)+\left(2-x-y\right)=0\)

\(\Rightarrow xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(2-3+z\right)=0\Rightarrow xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(z-1\right)=0\)

\(\Rightarrow\left(z-1\right)\left(xy-x-y+1\right)=0\Rightarrow\left(z-1\right)\left[\left(xy-x\right)-\left(y-1\right)\right]=0\Rightarrow\left(z-1\right)\left[x\left(y-1\right)-\left(y-1\right)\right]=0\)

\(\Rightarrow\left(z-1\right)\left(x-1\right)\left(y-1\right)=0\)

Suy ra có ít nhất 1 trong 3 số x,y,z bằng 1,khi đó A=0

Vậy A=0

12 tháng 2 2020

Ta có: \(x^2+y^2+z^2+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=6\)

<=> \(\left(x^2+\frac{1}{x^2}-2\right)+\left(y^2+\frac{1}{y^2}-2\right)+\left(z^2+\frac{1}{z^2}-2\right)=0\)

<=> \(\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2+\left(z-\frac{1}{z}\right)^2=0\)

<=> \(\hept{\begin{cases}x-\frac{1}{x}=0\\y-\frac{1}{y}=0\\z-\frac{1}{z}=0\end{cases}}\) 

<=> \(\hept{\begin{cases}x=\frac{1}{x}\\y=\frac{1}{y}\\z=\frac{1}{z}\end{cases}}\)

<=> \(\hept{\begin{cases}x^2=1\\y^2=1\\z^2=1\end{cases}}\)

<=> x = y = z = \(\pm\)1

Với x = y = z = 1 => P = 12018 + 12019 + 12020 = 3

     x = y = z = -1 => P = (-1)2018 + (-1)2019 + (-1)2020 = 1

Vậy ...

12 tháng 9 2018

     \(x^3+y^3=z\left(3xy-z^2\right)\)

\(\Rightarrow x^3+y^3=3xyz-z^3\)

\(\Rightarrow x^3+y^3+z^3=3xyz\)(1)

Từ (1) bạn biến đổi được: \(\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\) ( x+y+z=0 ko thỏa mãn đề bài.)

Mà \(x+y+z=3\Rightarrow x=y=z=1\)

Khi đó: \(A=673\left(1^{2020}+1^{2020}+1^{2020}\right)+1\)

              \(=673.3+1=2020\)

Vậy \(A=2020.\)Chúc bạn học tốt.

Sửa đề: \(x^2+2y^2+z^2-2xy-2y-4z+5=0\)

\(\Leftrightarrow x^2-2xy+y^2+y^2-2y+1+z^2-4z+4=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2+\left(z-2\right)^2=0\)

=>x=y=1 và z=2

\(A=\left(x-1\right)^{2018}+\left(y-1\right)^{2019}+\left(z-1\right)^{2020}\)

\(=\left(1-1\right)^{2018}+\left(1-1\right)^{2019}+\left(2-1\right)^{2020}\)

=1