K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2022

hảo hán nào giải đc không vậy?

4 tháng 5 2022

quên cách làm rùi

3 tháng 1 2024

chịu

 

AH
Akai Haruma
Giáo viên
5 tháng 1 2024

Bạn nên viết lại đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.

3A=3+3^2+...+3^2024

=>2A=3^2024-1

=>B-2A=3^2023-3^2024+1

27 tháng 7 2023

a, Dãy số trên có số số hạng là:

$(100-1):3+1=34$(số hạng)

Tổng dãy số trên là:

$(100+1)\times34:2=1717$

b, Dãy số trên có số số hạng là:

$(2023-3):5+1=405$(số hạng)

Tổng dãy số trên là:

$(2023+3)\times405:2=410265$

c, Dãy số trên có số số hạng là:

$(2002-2):4+1=501$(số hạng)

Tổng dãy số trên là:

$(2002+2)\times501:2=502002$

27 tháng 7 2023

Bài 2 tính

a) Dãy trên có số số hạng là:

( 100 - 1 ) : 3 + 1 = 34 

Tổng của dãy trên là:

( 100 + 1 ) x 34 : 2 = 1717

Đáp số: 1717

b) Dãy trên có số số hạng là:

( 2023 - 3 ) : 5 + 1 = 405

Tổng của dãy trên là:

( 2023 + 3 ) x 405 : 2 = 410265

c) Dãy trên có số số hạng là:

( 2002 - 2 ) : 4 + 1 = 501

Tổng của dãy trên là:

( 2002 + 2 ) x 501 : 2 = 502002

27 tháng 1 2024

Đây là dạng toán nâng cao chuyên đề về so sánh phân số, cấu trúc thi chuyên, thi học sinh giỏi, thi violympic. Hôm nay olm sẽ hướng dẫn em cách giải dạng này như sau.

                Xét dãy số: 2; 3; 4;...; 2023

     Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1  = 1

      Số số hạng của dãy số trên là: (2023 - 2) : 1  + 1  = 2022

     Vì \(\dfrac{3}{2^2}\) = \(\dfrac{3}{4}\) < 1 ; \(\dfrac{8}{3^2}\) = \(\dfrac{3^2-1}{3^2}\) < 1;...; \(\dfrac{2023^2-1}{2023^2}\) < 1 

                 Vậy A là tổng của 2022 phân số mã mỗi phân số đều nhỏ hơn 1

                  ⇒ A < 1 x 2022 = 2022 (1) 

                  Mặt  khác ta có: 
               A =     \(\dfrac{3}{2^2}\) + \(\dfrac{8}{3^2}\) + \(\dfrac{15}{4^2}\) + \(\dfrac{2023^2-1}{2023^2}\)

               A =  1 - \(\dfrac{1}{2^2}\) + 1  - \(\dfrac{1}{3^2}\) + ... + 1 - \(\dfrac{1}{2023^2}\)

              A =  (1 + 1 + 1+ ...+ 1) - (\(\dfrac{1}{2^2}\)  + \(\dfrac{1}{3^2}\)+...+ \(\dfrac{1}{2023^2}\))

              A = 2022 - (\(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + .... + \(\dfrac{1}{2023^2}\))

             Đặt B = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + .... + \(\dfrac{1}{2023^2}\)

                \(\dfrac{1}{2^2}\)    < \(\dfrac{1}{1.2}\)  = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)

                  \(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\)   =  \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)

                   \(\dfrac{1}{4^2}\) < \(\dfrac{1}{3.4}\) = \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)

                    ............................

                 \(\dfrac{1}{2023^2}\)\(\dfrac{1}{2022.2023}\) = \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)

                Cộng vế với vế ta có:

             B <  1 - \(\dfrac{1}{2023}\)

      ⇒ - B > -1 + \(\dfrac{1}{2023}\)

⇒ A = 2022 - B > 2022 - 1 + \(\dfrac{1}{2023}\) = 2021 + \(\dfrac{1}{2023}\) ⇒ A > 2021 (2)

Kết hợp (1) và (2) ta có: 

            2021 < A < 2022

Vậy A không phải là số tự nhiên (đpcm)

 

         

              

21 tháng 4 2024

A = 3. \(\dfrac{1}{1.2}\) - 5. \(\dfrac{1}{2.3}\) + 7. \(\dfrac{1}{3.4}\) + ... + 15. \(\dfrac{1}{7.8}\) -17 . \(\dfrac{1}{8.9}\)

22 tháng 11 2020

2) \(B=\left(1-2-3+4\right)+\left(5-6-7+8\right)+...+\left(1989-1990-1991+1992\right)+1993-1994\)

\(=0+0+...+0+1993-1994=0+1993-1994=-1\)