Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3A = 32 + 33 + .... + 311
3A - A = (32 - 32) + (33 - 33) + .... + (310 - 310) + (311 - 3)
Vậy A = \(\frac{3^{11}-3}{2}\)
3A = 32 + 33 + ... + 311
3A - A = ( 32+33+34+35+...+310+311) - ( 3+32+33+34+...+39+310)
2A = 311 - 3
A = 177144 : 2 = 88572
Vậy A = 88572
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\right)\)
\(2A=1-\frac{1}{3^{100}}\)
\(A=\frac{1-\frac{1}{3^{100}}}{2}\)
\(B=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
\(B=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(B=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+...+\frac{5}{25.28}\)
\(3B=\frac{5.3}{4.7}+\frac{5.3}{7.10}+\frac{5.3}{10.13}+...+\frac{5.3}{25.28}\)
\(3B=5\left(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{25.28}\right)\)
\(3B=5\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)
\(3B=5\left(\frac{1}{4}-\frac{1}{28}\right)\)
\(3B=5\cdot\frac{3}{14}=\frac{15}{14}\)
\(B=\frac{15}{14}:3=\frac{5}{14}\)
a) \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\right)\)
\(2A=1-\frac{1}{3^{100}}\)
\(\Rightarrow A=\frac{1-\frac{1}{3^{100}}}{2}\)
b) \(B=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
\(B=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(B=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+...+\frac{5}{25.28}\)
\(B=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{7}\right)+\frac{5}{3}.\left(\frac{1}{7}-\frac{1}{10}\right)+\frac{5}{3}.\left(\frac{1}{10}-\frac{1}{13}\right)+...+\frac{5}{3}.\left(\frac{1}{25}-\frac{1}{28}\right)\)
\(B=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)
\(B=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{28}\right)\)
\(B=\frac{5}{3}.\frac{3}{14}\)
\(\Rightarrow B=\frac{5}{14}\)
1, có từ 1đến 100 có 100 số hạng .Chia thành 50 nhóm .Mỗi nhóm co 2 số hạng
Suy ra A= [1+(-2)]+[3+(-4)]+......+[99+(-100)]
A= (-1)+(-1)+.... +(-1)
A= (-1).50=(-50)
2,A=(1-2)+(3-4)+.....+(2015-2016)
A=(-1)+(-1)+....+(-1)
A có 2016 số hạng .Chia thành 1008 nhóm .Mỗi nhóm co 2 số hạng và có tổng =(-1)
A=(-1).1008=(-1008)
\(A=\left(1+3+...+99\right)-\left(2+4+...+100\right)\)
\(A=\left(\left(1+99\right)\cdot\frac{50}{2}\right)-\left(\left(2+100\right)\cdot\frac{50}{2}\right)\)
\(A=2500-2550=-50\)
Đúng ko ta lâu rồi ko làm.
\(A=\left(\left(1+99\right)\cdot\frac{50}{2}\right)-\left(\left(2+100\right)\cdot\frac{50}{2}\right)\)
a, \(S=\frac{3}{6}+\frac{3}{10}+...+\frac{3}{4950}\)
\(\frac{1}{6}S=\frac{1}{6}\left(\frac{3}{6}+\frac{3}{10}+...+\frac{3}{4950}\right)\)
\(\frac{1}{6}S=\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(\frac{1}{6}S=\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(\frac{1}{6}S=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{6}S=\frac{1}{3}-\frac{1}{100}\)
\(\frac{1}{6}S=\frac{97}{300}\)
\(\Rightarrow S=\frac{97}{300}\div\frac{1}{6}=\frac{97}{300}.6=\frac{97}{50}\)
Vậy S = \(\frac{97}{50}\)
b, Đặt A = 3+32+33+34+ ... +396
Số số hạng của A là : (96 - 1) : 1 + 1 = 96 (số hạng)
Nếu nhóm 6 số hạng vào 1 nhóm thì số nhóm là :
96 : 6 = 16 (nhóm)
Ta có :
A = (3 + 32 + 33 + 34 + 35 + 36) + (37 + 38 + 39 + 310 + 311 + 312) + ... + ( 391 + 392 + 393 + 394 + 395 + 396)
=> A = 3.(1 + 3 + 32 + 33 + 34 + 35) + 37(1 + 3 + 32 + 33 + 34 + 35) + ... + 391(1 + 3 + 32 + 33 + 34 + 35)
=> A = 3. 364 + 37.364 + ... + 391.364
=> A = 364. (3 + 37 + .... + 391) \(⋮\)7 (vì 364 \(⋮\)7)
Vậy A \(⋮\)7
T=32+33+....+310
3T=33+34+......+311
3T-T=311-32
T=(311-32):2 (Nếu số nhỏ thì có thể tính ra STN.Còn lớn thì để nguyên như vậy.)
Ta có :
\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
\(2S=6+3+\frac{3}{2}+...+\frac{3}{2^8}\)
\(2S-S=\left(6+3+\frac{3}{2}+...+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\right)\)
\(S=6-\frac{3}{2^9}\)
\(S=\frac{2^{10}.3-3}{2^9}\)
Vậy \(S=\frac{2^{10}.3-3}{2^9}\)
vận dụng 3S lên
xong tìm S nha bn ok
tại k có thời gian nên chỉ giúp thế thôi
a) \(1+2^1+2^2+2^3+....+2^{10}\)
\(\Rightarrow2A=2^1+2^2+2^3+....+2^{10}+2^{11}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+....+2^{10}+2^{11}\right)-\left(1+2+2^2+2^3+....+2^{10}\right)\)
\(\Rightarrow A=2^{11}-1\)
b) \(3+3^2+3^3+3^4+.....+3^{100}\)
\(3A=3^2+3^3+3^4+....+3^{100}+3^{101}\)
\(3A-A=\left(3^2+3^3+3^4+....+3^{100}+3^{101}\right)-\left(3+3^2+3^3+....+3^{100}\right)\)
\(2A=3^{101}-3\)
\(A=\frac{3^{101}-3}{2}\)
c) \(2+2^2+2^3+....+2^{100}\)
\(2A=2^2+2^3+2^4+....+2^{100}+2^{101}\)
\(2A-A=\left(2^2+2^3+2^4+....+2^{100}+2^{101}\right)-\left(2+2^2+2^3+.....+2^{100}\right)\)
\(A=2^{101}-2\)
a, A = 1+7+72+73+...+710
7A = 7+72+73+74+...+711
6A = 7A - A = 711 - 1
=> A = \(\frac{7^{11}-1}{6}\)
b, B = 1+3+32+33+...+3100
3B = 3+32+33+34+....+3101
2B = 3B - B = 3101 - 1
=> B = \(\frac{3^{101}-1}{2}\)