\(^{2+2^3+2^3+2^4+......+2^{10}}\)

b/

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2018

a) \(1+2^1+2^2+2^3+....+2^{10}\)

\(\Rightarrow2A=2^1+2^2+2^3+....+2^{10}+2^{11}\)

\(\Rightarrow2A-A=\left(2+2^2+2^3+....+2^{10}+2^{11}\right)-\left(1+2+2^2+2^3+....+2^{10}\right)\)

\(\Rightarrow A=2^{11}-1\)

b) \(3+3^2+3^3+3^4+.....+3^{100}\)

\(3A=3^2+3^3+3^4+....+3^{100}+3^{101}\)

\(3A-A=\left(3^2+3^3+3^4+....+3^{100}+3^{101}\right)-\left(3+3^2+3^3+....+3^{100}\right)\)

\(2A=3^{101}-3\)

\(A=\frac{3^{101}-3}{2}\)

c) \(2+2^2+2^3+....+2^{100}\)

\(2A=2^2+2^3+2^4+....+2^{100}+2^{101}\)

\(2A-A=\left(2^2+2^3+2^4+....+2^{100}+2^{101}\right)-\left(2+2^2+2^3+.....+2^{100}\right)\)

\(A=2^{101}-2\)

5 tháng 7 2018

a)  2 + 6 + 10 + 14 +...+202

= 2.1 + 2.3 + 2.5 + 2.7 +...+2.101

=2.(1+3+5+7+...+101)

=2.[(1+101).51:2]

=2.2601

=5202

b) Đặt A=1+2+22+23+...+265

=> 2A=2+22+23+24+...+266

=>2A-A=266-1

A=266-1

5 tháng 7 2018

+) Số số hạng của dãy là : \(\left(202-2\right):4+1=51\) (số)

    Tổng của dãy là : \(\frac{\left(202+2\right)\times51}{2}=5202\)

+) Đặt  \(A=1+2+2^2+2^3+...+2^{65}\)

\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{66}\)

\(\Rightarrow2A-A=A=\left(2+2^2+2^3+2^4+...+2^{66}\right)-\left(1+2+2^2+2^3+...+2^{65}\right)\)

\(\Rightarrow A=2^{66}-1\)

+) Đặt \(B=5+5^2+5^3+...+5^{100}\)

\(\Rightarrow5B=5^2+5^3+5^4+...+5^{101}\)

\(\Rightarrow5B-B=4B=\left(5^2+5^3+5^4+...+5^{101}\right)-\left(5+5^2+5^3+...+5^{100}\right)\)

\(\Rightarrow4B=5^{101}-5\)

\(\Rightarrow B=\frac{5^{101}-5}{4}\)

_Chúc  bạn học tốt_

30 tháng 4 2019

Bài 1 :

\(x\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\right)=1\)

\(\Rightarrow x\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)=1\)

\(\Rightarrow x\left(\frac{1}{2}-\frac{1}{50}\right)=1\)

\(\Rightarrow x\cdot\frac{24}{50}=1\)

\(\Rightarrow x=1\div\frac{24}{50}=\frac{25}{12}\)

                            #Louis

30 tháng 4 2019

\(\frac{1}{2.3}x+\frac{1}{3.4}x+\frac{1}{4.5}x+...+\frac{1}{49.50}x=1\)

\(\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\right)x=1\)

\(\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\right)x=1\)

\(\left(\frac{1}{2}-\frac{1}{50}\right)x=1\)

\(\frac{12}{25}x=1\)

Đến đây dễ rồi :)))

Bn tự tính típ nha

1 tháng 6 2018

a/ \(A=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+........+\frac{99}{100!}\)

\(\Leftrightarrow A=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+......+\frac{100-1}{100!}\)

\(\Leftrightarrow A=\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+.....+\frac{100}{100!}-\frac{1}{100!}\)

\(\Leftrightarrow A=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+....+\frac{1}{99!}-\frac{1}{100!}\)

\(\Leftrightarrow A=1-\frac{1}{100!}\)

b/ \(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+.....+\frac{1}{98.99.100}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+.....+\frac{1}{98.99}-\frac{1}{99.100}\)

\(=\frac{1}{1.2}-\frac{1}{99.100}\)

\(=\frac{1}{2}-\frac{1}{9900}\)

23 tháng 4 2017

Ai trả lời giúp mik nha

26 tháng 4 2017

1)

Dễ thấy \(B=\dfrac{10^{19}}{10^{19}-3}>1\)

\(\Rightarrow B=\dfrac{10^{19}}{10^{19}-3}>\dfrac{10^{19}+2}{10^{19}-3+2}=\dfrac{10^{19}+2}{10^{19}-1}=A\)

26 tháng 4 2017

bn ơi chắc j bn đó đã học công thức này

28 tháng 9 2019

bài 1 mifk viết sai nha.

bài 1: cho A=1+3+3\(^2\)+3\(^3\)+...+3\(^{10}\).Tìm số tự nhiên n biết 2 x A + 1 = 3\(^n\)

29 tháng 9 2019

B1:

\(A=1+3+3^2+3^3+...+3^{10}\\ 3A=3+3^2+3^3+3^4+...+3^{11}\\ 3A-A=3^{11}-1\\ \Rightarrow A=\frac{3^{11}-1}{2}\)

mấy câu khác tương tự nha

2 tháng 1 2019

Tham khảo:Câu hỏi của Mắt Diều Hâu - Toán lớp 5  nhé bạn!

~ HọC tỐt ~ tth ~