Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Đặt A = 1 + 7 + 72 + 73 + ... + 72016
7A = 7 + 72 + 73 + 74 + ... + 72017
7A - A = (7 + 72 + 73 + 74 + ... + 72017) - (1 + 7 + 72 + 73 + ... + 72016)
6A = 72017 - 1
\(A=\frac{7^{2017}-1}{6}\)
b) Đặt B = 1 + 4 + 42 + 43 + ... + 42017
4B = 4 + 42 + 43 + 44 + ... + 42018
4B - B = (4 + 42 + 43 + 44 + ... + 42018) - (1 + 4 + 42 + 43 + ... + 42017)
3B = 42018 - 1
\(B=\frac{4^{2018}-1}{3}\)
Bài 2:
a) Ta có: \(14\equiv1\left(mod13\right)\)
\(\Rightarrow14^{14}\equiv1\left(mod13\right)\)
\(\Rightarrow14^{14}-1⋮13\left(đpcm\right)\)
b) Ta có: \(2015\equiv1\left(mod2014\right)\)
\(\Rightarrow2015^{2015}\equiv1\left(mod2014\right)\)
\(\Rightarrow2015^{2015}-1⋮2014\left(đpcm\right)\)
Sorry mình thiếu 1+7+72+73+...+72016 câu dưới cũng thiếu 4 nha
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\)
\(\Rightarrow\)\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2014}}+\frac{1}{2^{2015}}\)
\(\Rightarrow\)\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)\)
\(\Rightarrow\)\(A=1-\frac{1}{2^{2016}}\)
Đặt A=12-22+.....-20162
=> -A=22-12+42-32+62-52...+20162-20152
-A=(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)...+(2016-2015)(2016+2015)
-A=3+7+11+...+4031
-A=[(4031-3):4+1]:2 x (3+4031)
-A=2033136
A=-2033136
trả lời cho
-2033136
tui k chắc đâu nha .Nếu đúng tik đó
Đặt A=12-22+.....-20162
=> -A=22-12+42-32+62-52...+20162-20152
-A=(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)...+(2016-2015)(2016+2015)
-A=3+7+11+...+4031
-A=[(4031-3):4+1]:2 x (3+4031)
-A=2033136
A=-2033136
Đặt A=12-22+.....-20162
=> -A=22-12+42-32+62-52...+20162-20152
-A=(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)...+(2016-2015)(2016+2015)
-A=3+7+11+...+4031
-A=[(4031-3):4+1]:2 x (3+4031)
-A=2033136
A=-2033136
Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.........+\frac{1}{2^{2016}}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{2016}}\)
\(\Rightarrow2A-A=1-\frac{1}{2^{2016}}\)
\(\Rightarrow A=1-\frac{1}{2^{2016}}\)
\(\left(\frac{1}{2^2}-1\right)\cdot\left(\frac{1}{3^2}-1\right)\cdot..\cdot\left(\frac{1}{10^2}-1\right)\)
\(=\left(\frac{1}{2}\cdot\frac{1}{2}-1\right)\cdot\left(\frac{1}{3}\cdot\frac{1}{3}-1\right)\cdot...\cdot\left(\frac{1}{10}\cdot\frac{1}{10}-1\right)\)
\(=\left(\frac{1}{4}-1\right)\cdot\left(\frac{1}{9}-1\right)\cdot...\cdot\left(\frac{1}{100}-1\right)\)
\(=\frac{-3}{4}\cdot\frac{-8}{9}\cdot...\cdot\frac{-99}{100}\)
\(=\frac{\left(-1\right).\left(-3\right)}{2.2}\cdot\frac{\left(-2\right).\left(-4\right)}{3.3}\cdot...\cdot\frac{\left(-9\right).\left(-11\right)}{10.10}\)
\(=\frac{\left(-1\right).\left(-2\right)....\left(-9\right)}{2.3....10}\cdot\frac{\left(-3\right).\left(-4\right)....\left(-11\right)}{2.3.....10}\)
\(=\frac{-1}{10}\cdot\frac{-11}{2}=\frac{-11}{20}\)
a/ Ta tính trường hợp tổng quát có n số hạng. Ta có:
+/ S1 = 1 + 2 + 3 + ....+n = \(\frac{n\left(n+1\right)}{2}\)
+/ S2 = 1.2 + 2.3 + 3.4 +...+ n(n+1)
3S2 = 1.2.3 + 2.3.3 + 3.4.3 +..+ n(n+1).3
3S2= 1.2.3 + 2.3.(4-1) + 3.4.(5-2) +..+ n(n+1)(n+2 -(n-1))
3S2= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +.. - (n-1)n(n+1) + n(n+1)(n+2)
3S2= n(n+1)(n+2)
=> S2 = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Tính S = 1² + 2² + ...+ n²
Ta có: S2 - S1 = [1.2 + 2.3 + 3.4 +...+ n(n+1)]-(1 + 2 + 3 + ....+n)
=> S2 - S1=(1.2-1)+(2.3-2)+(3.4-3)+...+[n(n+1)-n]
=> S2 - S1=1+4+9+...+n2=12+22+32+...+n2=S
Như vậy: S=S2-S1=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}-\frac{n\left(n+1\right)}{2}\)
=> \(S=n\left(n+1\right).\left(\frac{n+2}{3}-\frac{1}{2}\right)\)
=> \(S=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
Thay n=98 => \(S=\frac{98.99.197}{6}=318549\)
b/ 2014.2016=2014(2015+1)=2014+2014.2015=2014+2015(2015-1)=2014+20152-2015=20152-1<20152
Vậy 2014.2016<20152
`#3107`
\(A=1+2^1+2^2+2^3+...+2^{2015}\)
\(2A=2+2^2+2^3+2^4+...+2^{2016}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2016}\right)-\left(1+2+2^2+2^3+...+2^{2015}\right)\)
\(A=2+2^2+2^3+2^4+...+2^{2016}-1-2-2^2-2^3-...-2^{2015}\)
\(A=2^{2016}-1\)
Vậy, \(A=2^{2016}-1.\)
\(A=2^0+2^1+2^2+...+2^{2015}\)
\(2\cdot A=2^1+2^2+2^3+...+2^{2016}\)
\(A=2A-A=2^{2016}-2^0\)
\(A=2^{2016}-1\)