K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2015

Ta co: A = 1/10+ 1/15+1/21+...+1/120 

              = 2/20+2/30+2/42+...+2/240=2/(4*5)+2/(5*6)+.....+2/(15*16)

              = 2*[1/(4*5)+1/(5*6)+...........+ 1/(15*16)]

              = 2* [ 1/4-1/5+1/5-1/6+.........+1/15-1/16]

              = 2*[1/4-1/16]

             = 2*3/16

              = 3/8

Vay A=3/8

 

6 tháng 4 2015

\(C=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}=2\times\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\right)\)

\(C=2\times\left(\frac{1}{4\times5}+\frac{1}{5\times6}+\frac{1}{6\times7}+...+\frac{1}{15\times16}\right)\)

\(C=2\times\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)=2\times\left(\frac{1}{4}-\frac{1}{16}\right)=\frac{3}{8}\)

22 tháng 7 2017

c = 2/20 + 2/30 +2/42 + ... 2 /240

=2/4.5 +2/5.6 + 2/6.7 + ... +1/15.16

=2. (1/4.5 + 1/5.6 + 1/6.7 +...+1/15.16)

= 2.(1/4-1/5+1/5-...-1/16)

=2.(1/4-1/6)=2.3/16=3/8.

ghi nho dau cham la dau nhan

21 tháng 5 2015

Ta có:

\(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)

\(=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)

\(=\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}+...+\frac{2}{15.16}\)

\(=2.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)

\(=2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)

\(=2.\left(\frac{1}{4}-\frac{1}{16}\right)\)

\(=2.\left(\frac{4}{16}-\frac{1}{16}\right)\)

\(=2.\frac{3}{16}=\frac{3}{8}\)

 

 

18 tháng 3 2017

= 3/8 nhe

6 tháng 6 2019

\(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+....+\frac{1}{120}\)

Ta có :

\(\frac{1}{10}< 1\)

\(\frac{1}{15}< 1\)

\(\frac{1}{21}< 1\)

........................

\(\frac{1}{120}< 1\)

\(\Rightarrow\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}< 1\)

\(\Rightarrow A< 1\)( đpcm)

6 tháng 6 2019

Ta có : A =  \(\frac{1}{10}+\frac{1}{15}+...+\frac{1}{120}\)

\(\frac{1}{20}\times2+\frac{1}{30}\times2+...+\frac{1}{240}\times2\)

\(2\times\left(\frac{1}{20}+\frac{1}{30}+...+\frac{1}{240}\right)\)

\(2\times\left(\frac{1}{4\times5}+\frac{1}{5\times6}+...+\frac{1}{15\times16}\right)\)

\(2\times\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{15}-\frac{1}{16}\right)\)

\(2\times\left(\frac{1}{4}-\frac{1}{16}\right)\)

\(2\times\frac{3}{16}\)

\(\frac{3}{8}\)< 1 

=> A < 1 

24 tháng 9 2021

\(S=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+....+\frac{1}{120}\)

\(S=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+....+\frac{2}{240}\)

\(2S=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+....+\frac{1}{240}\)

\(2S=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+.....+\frac{1}{15.16}\)

\(2S=\left(\frac{1}{4}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+\left(\frac{1}{6}-\frac{1}{7}\right)+.....+\left(\frac{1}{15}-\frac{1}{16}\right)\)

\(2S=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{15}-\frac{1}{16}\)

\(2S=\frac{1}{4}-\frac{1}{16}\)

\(2S=\frac{3}{16}\)

\(S=\frac{3}{8}\)

24 tháng 9 2021

= 1 : 10 + 1 : 15 + 1 : 21 + ... + 1 : 120

= 1 : (10 + 15 + 21 + ... + 120)

= 1 : 670 = 1/670

13 tháng 8 2016

A = 1/10 + 1/15 + 1/21 + ... + 1/120

A = 2/20 + 2/30 + 2/42 + ... + 2/240

A = 2 × (1/4×5 + 1/5×6 + 1/6×7 + ... + 1/15×16)

A = 2 × (1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/15 - 1/16)

A = 2 × (1/4 - 1/16)

A = 2 × (4/16 - 1/16)

A = 2 × 3/16

A = 3/8

13 tháng 8 2016

lớp 5 chưa học toán này

17 tháng 7 2016

\(C=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)

\(C=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)

\(C=\frac{2}{4\times5}+\frac{2}{5\times6}+\frac{2}{6\times7}+...+\frac{2}{15\times16}\)

\(C=2\times\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)

\(C=2\times\left(\frac{1}{4}-\frac{1}{16}\right)\)

\(C=2\times\frac{3}{16}=\frac{3}{8}\)

17 tháng 7 2016

\(C=\frac{2}{20}+\frac{2}{30}+.........+\frac{2}{240}\)

\(=2\left(\frac{1}{4.5}+\frac{1}{5.6}+..........+\frac{1}{15.16}\right)\)

\(=2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+.......+\frac{1}{15}-\frac{1}{16}\right)\)

\(=2\left(\frac{1}{4}-\frac{1}{16}\right)\)

\(=2.\frac{3}{16}\)

\(=\frac{3}{8}\)

20 tháng 12 2023

A =  \(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) +  \(\dfrac{1}{15}\) +.. .  + \(\dfrac{1}{120}\)

A =  \(\dfrac{2}{2}\).(\(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) + \(\dfrac{1}{15}\) + ... + \(\dfrac{1}{120}\))

A = 2.( \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) + ... + \(\dfrac{1}{240}\))

A = 2.( \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + ... + \(\dfrac{1}{15.16}\))

A  =2 .( \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + \(\dfrac{1}{15}\) - \(\dfrac{1}{16}\))

A = 2.( \(\dfrac{1}{2}\) - \(\dfrac{1}{16}\))

A = 2.\(\dfrac{7}{16}\)

A = \(\dfrac{7}{8}\)