Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=1/2+1/4+1/8+1/16+1/32+1/64
S=1-1/2+1/2-1/4+1/4-1/8+1/8-1/16+1/16-1/32+1/32-1/64
S=1-1/64
S=63/64
tính nhanh hộ mình câu này nha (có kèm bài làm , ai nhanh mình tick cho );
1/2+1/4+1/8+1/16+1/32+1/64
(1/2+1/8)+(1/4+1/16)+(1/8+1/32)+1/64
=1/10+1/20+1/40+1/64
=61/320
lấy 1/64 làm mẫu xố chung
1/64+2/64+4/64+8/64+12/64+32/64=59/64
cách tính như sau nếu tính quy luật phân số mà tử số giử nguyên phân số sau có mẫu số gấp đôi phân số liền thước nó thì kết quả cuối cùng của phép tính bằng 1 phân số có tử số kém mẫu số là một đơn vị và mẫu số là mẫu số cuối cùng của phép tính trên. Vậy kết quả của phép tính trên là: 63/64
\(\frac{1}{8}+\frac{1}{32}+\frac{1}{128}+\frac{1}{512}+\frac{1}{2048}\)
= \(\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}+\frac{1}{2^{11}}\)
= \(\frac{341}{2048}\)
b: A=1/3+1/9+...+1/3^10
=>3A=1+1/3+...+1/3^9
=>A*2=1-1/3^10=(3^10-1)/3^10
=>A=(3^10-1)/(2*3^10)
c: C=3/2+3/8+3/32+3/128+3/512
=>4C=6+3/2+...+3/128
=>3C=6-3/512
=>C=1023/512
d: A=1/2+...+1/256
=>2A=1+1/2+...+1/128
=>A=1-1/256=255/256
A = \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\)+ \(\dfrac{1}{32}\)+\(\dfrac{1}{64}\)+\(\dfrac{1}{128}\)
A\(\times\) 2 = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\)+ \(\dfrac{1}{32}\)+ \(\dfrac{1}{64}\)
A \(\times\) 2 - A = 1 - \(\dfrac{1}{128}\)
A\(\times\)(2-1) = \(\dfrac{128-1}{128}\)
A = \(\dfrac{127}{128}\)
Gọi \(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\) là B
\(B=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\)
\(2\cdot B=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{12}+\dfrac{1}{32}+\dfrac{1}{64}\)
\(2\cdot B-B=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{12}+\dfrac{1}{32}+\dfrac{1}{64}-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\right)\)
\(B=1+\left(\dfrac{1}{2}-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+.....+\dfrac{1}{64}-\dfrac{1}{64}\right)-\dfrac{1}{128}\)
\(B=1+0-\dfrac{1}{128}\)
\(B=1-\dfrac{1}{128}\)
\(B=\dfrac{128}{128}-\dfrac{1}{128}\)
\(B=\dfrac{127}{128}\)
a , tổng các phân số đã cho là : 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 = 79/64
b, \(\frac{79}{64}\)và \(\frac{2017}{2018}\)= \(\frac{159422}{129152}\)và \(\frac{129088}{129152}\)= \(\frac{159422}{129152}\)> \(\frac{129088}{129152}\)
=> \(\frac{79}{64}\)> \(\frac{2017}{2018}\)
a) 1/2 + 1/4 + 1/8 + 1/ 16 + 1/32 + 1/64
=32/64 + 16/64 + 8/64 + 4/64 + 2/64
=32+16+8+4+2/64 = 66/64= 33/32
b) ta có 33/32 > 1 và 2017/2018<1
nên 33/32 > 2017/2018
B)A*2=(1/2+1/4+....+1/256)*2
=1+1/2+1/4+....+1/128)
A*2-A=(1+1/2+1/4+...+1/128)-(1/2+1/4+...+1/256)
=1-1/256
=255/256
a) Đặt A = \(\frac{5}{2}+\frac{5}{6}+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}\)
\(\Rightarrow\frac{1}{3}\times A=\frac{5}{6}+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}+\frac{5}{486}\)
Lấy \(A-\frac{1}{3}\times A\)theo vế ta có :
\(A-\frac{1}{3}\times A=\left(\frac{5}{2}+\frac{5}{6}+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}\right)-\left(\frac{5}{6}+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}+\frac{5}{486}\right)\)
\(\Rightarrow\frac{2}{3}\times A=\frac{5}{2}-\frac{5}{486}\)
\(\Rightarrow\frac{2}{3}\times A=\frac{605}{243}\)
\(\Rightarrow A=\frac{605}{243}:\frac{2}{3}\)
\(\Rightarrow A=\frac{605}{162}\)
Vậy \(\frac{5}{2}+\frac{5}{6}+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}=\frac{605}{162}\)
b) Đặt B = \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}+\frac{1}{256}\)
=> \(\frac{1}{2}\times B=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{256}+\frac{1}{512}\)
Lấy B trừ \(\frac{1}{2}\times B\)theo vế ta có :
\(B-\frac{1}{2}\times B=\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...++\frac{1}{128}+\frac{1}{256}\right)-\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+...+\frac{1}{512}\right)\)
\(\Rightarrow\frac{1}{2}\times B=\frac{1}{2}-\frac{1}{512}\)
\(\Rightarrow\frac{1}{2}\times B=\frac{255}{512}\)
\(\Rightarrow B=\frac{255}{512}:\frac{1}{2}\)
\(\Rightarrow B=\frac{255}{256}\)
Vậy \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{256}=\frac{255}{256}\)
Ta có:2A=\(2+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\)
2A-A=\(\left(2+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\right)\)
\(=2-\frac{1}{32}=\frac{63}{32}=A\)
Ta có: \(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
\(\Rightarrow A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}\)
\(\Rightarrow2A=2+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}\)
\(\Rightarrow2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}\right)\)
\(\Rightarrow A=1-\frac{1}{2^5}=\frac{31}{32}\)
Vậy \(A=\frac{31}{32}\)