Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) A=1-2+3-4+5-6+.....+99-100+101?
Giải
A=1-2+3-4+5-6+.....+99-100+101.
Ta viết lại tổng như sau:
A = 101 - 100 + 99 - 98 + ... + 5 - 4 + 3 - 2 + 1
A = 1 + 1 + ... + 1 + 1 + 1
Số phép trừ trong dãy tính là:
( 101 - 1 ) : 2 = 50 ( phép trừ )
Kết quả dãy số là:
1 x 50 + 1 = 51
Vậy:
A=1-2+3-4+5-6+.....+99-100+101.
A= 51
2) B=1+11+21+...+991
=(1+991)+(2+998)+...
=992 x 50
=4960
1 - 2 + 3 - 4 + 5 - 6 + ... + 99 - 100 + 101
ta biến đổi thành : 101 - 100 + 99 -...- 6 + 5 - 4 + 3 - 2 + 1
ta thấy có 101 số hạng ta nhóm 2 số 1 nhóm được 50 nhóm và thừa số 1
mà mỗi nhóm có giá trị bằng 1 => 1 - 2 + 3 - 4 + 5 - 6 + ... + 99 - 100 + 101 = 50 x 1 + 1 = 51
Tổng của dãy 1 + 3 + 5 + 7 + ... + 99 + 101 là:
- Số số hạng là: (101 - 1) : 2 + 1 = 51 số
- Tổng là: (101 + 1) x 51 : 2 = 2601
Tổng của dãy 2 + 4 + 6 + ... + 78 + 80 là:
- Số số hạng là: (80 - 2) : 2 + 1 = 40 số
- Tổng là: (80 + 2) x 40 : 2 = 1640
Vậy (1 + 3 + 5 + ... + 99 + 101) - (2 + 4 + 6 + ... + 78 + 80) = 2601 - 1640 = 961
S = (1 + 3 + 5 + 7+ 9 + 99 + 101) - ( 2 + 4 + 6 + ...+ 78 + 80)
Đặt A = 1 + 3 + 5 +7 + 9 +...+99 + 101
B = 2 + 4 + 6 + ...+ 78 + 80
A = 1 + 3 + 5 + 7 + 9+...+ 101
Dãy số trên là dãy số cách đều với khoảng cách là:
3 - 1 = 2
Số số hạng của dãy số trên là: (101 - 1 ): 2 + 1 = 51 (số )
Tổng A = (101 + 1)\(\times\) 51 : 2 = 2601
B = 2 + 4 + 6 + ...+ 78 + 80
Dãy số trên là dãy số cách đều với khoảng cách là: 4 - 2 = 2
Số số hạng của dãy số trên là: (80 - 2): 2 + 1 = 40
Tổng B = (80 + 2)\(\times\) 40: 2 = 1640
S = 2601 - 1640
S = 961
Đặt S = | 1 | + | 1 | + … + | 1 |
1 . 3 | 3 . 5 | 99 . 101 |
Ta có:
1 | - | 1 | = | 3 - 1 | = | 2 |
1 | 3 | 1 . 3 | 1 . 3 |
Suy ra:
1 | = | 1 | ( | 1 | - | 1 | ) |
1 . 3 | 2 | 1 | 3 |
Tương tự ta có:
1 | = | 1 | ( | 1 | - | 1 | ) |
3 . 5 | 2 | 3 | 5 |
1 | = | 1 | ( | 1 | - | 1 | ) |
5 . 7 | 2 | 5 | 7 |
. . .
1 | = | 1 | ( | 1 | - | 1 | ) |
99 . 101 | 2 | 99 | 101 |
Cộng các vế của các đẳng thức trên ta được:
- Vế trái: tổng S
- Vế phải: số thứ hai ở dòng trên sẽ triệt tiêu với số thứ nhất ở dòng dưới ⇒ vế phải còn lại số thứ nhất của dòng đầu tiên trừ đi số thứ hai của dòng cuối cùng.
S = | 1 | ( | 1 | - | 1 | ) |
2 | 1 | 101 |
S = | 1 | 101 - 1 | |
2 | 101 |
S = | 100 |
202 |
Rút gọn phân số trên (chia cả tử và mẫu cho 2) ta được:
Tổng ban đầu = | 50 |
101 |
\(1.3+2.4+3.5+...+99.101\)
\(=3+8+15+...+9999\)
Số số hạng \(=\left(9999-3\right):2+1=4999\)
Tổng \(=\left(9999+3\right).4999:2=24999999\)