Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) A=1-2+3-4+5-6+.....+99-100+101?
Giải
A=1-2+3-4+5-6+.....+99-100+101.
Ta viết lại tổng như sau:
A = 101 - 100 + 99 - 98 + ... + 5 - 4 + 3 - 2 + 1
A = 1 + 1 + ... + 1 + 1 + 1
Số phép trừ trong dãy tính là:
( 101 - 1 ) : 2 = 50 ( phép trừ )
Kết quả dãy số là:
1 x 50 + 1 = 51
Vậy:
A=1-2+3-4+5-6+.....+99-100+101.
A= 51
2) B=1+11+21+...+991
=(1+991)+(2+998)+...
=992 x 50
=4960
\(1.3+2.4+3.5+...+99.101\)
\(=3+8+15+...+9999\)
Số số hạng \(=\left(9999-3\right):2+1=4999\)
Tổng \(=\left(9999+3\right).4999:2=24999999\)
Đặt S = | 1 | + | 1 | + … + | 1 |
1 . 3 | 3 . 5 | 99 . 101 |
Ta có:
1 | - | 1 | = | 3 - 1 | = | 2 |
1 | 3 | 1 . 3 | 1 . 3 |
Suy ra:
1 | = | 1 | ( | 1 | - | 1 | ) |
1 . 3 | 2 | 1 | 3 |
Tương tự ta có:
1 | = | 1 | ( | 1 | - | 1 | ) |
3 . 5 | 2 | 3 | 5 |
1 | = | 1 | ( | 1 | - | 1 | ) |
5 . 7 | 2 | 5 | 7 |
. . .
1 | = | 1 | ( | 1 | - | 1 | ) |
99 . 101 | 2 | 99 | 101 |
Cộng các vế của các đẳng thức trên ta được:
- Vế trái: tổng S
- Vế phải: số thứ hai ở dòng trên sẽ triệt tiêu với số thứ nhất ở dòng dưới ⇒ vế phải còn lại số thứ nhất của dòng đầu tiên trừ đi số thứ hai của dòng cuối cùng.
S = | 1 | ( | 1 | - | 1 | ) |
2 | 1 | 101 |
S = | 1 | 101 - 1 | |
2 | 101 |
S = | 100 |
202 |
Rút gọn phân số trên (chia cả tử và mẫu cho 2) ta được:
Tổng ban đầu = | 50 |
101 |
Link nè lên google search nha!
https://olm.vn/hoi-dap/question/162533.html
A = \(\frac{1}{1\cdot3}\)+ \(\frac{1}{3.5}\)+ \(\frac{1}{5.7}\)+ ..... + \(\frac{1}{99.101}\)
= \(\frac{1}{2}\). ( \(\frac{1}{1.3}\)+ \(\frac{1}{3.5}\)+ \(\frac{1}{5.7}\)+ ...... + \(\frac{1}{99.101}\))
= \(\frac{1}{2}\). ( 1 - \(\frac{1}{3}\)+ \(\frac{1}{3}\)- \(\frac{1}{5}\)+ \(\frac{1}{5}\)- \(\frac{1}{7}\)+ ........ + \(\frac{1}{99}\)- \(\frac{1}{101}\))
= \(\frac{1}{2}\). ( 1 - \(\frac{1}{101}\))
= \(\frac{1}{2}\). \(\frac{100}{101}\)= \(\frac{50}{101}\)
Thấy đúng thì cho mình một k nha!!!
a) A = 2 + 4 + 6 + 8 + ... + 1000
Ta có : A = 2 + 4 + 6 + 8 + ... + 1000 ( có 500 số )
= (1000 + 2) . 500 : 2 = 250500
c) \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
S = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9
Số các số hạng của tổng \(S\)là :
\(\left(9-1\right)\div1+1=9\)( số hạng )
Tổng của dãy số \(S\)là :
\(\frac{\left(9+1\right).9}{2}=45\)
Đ/S: 45
M = 1 + 2 + 3 + 4 + 5 + ... + 99 + 100 + 101
Số các số hạng của tổng \(M\)là :
\(\left(101-1\right)\div1+1=101\)
Tổng của dãy số \(M\)là :
\(\frac{\left(101+1\right).101}{2}=5151\)
Đ/S : 5151
Số số hạng của dãy trên là :
(9 - 1) : 1 + 1 = 9 (số)
Tổng là :
(9 + 1) x 9 : 2 = 45
a) \(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{99.101}\)
\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right)+\left(\frac{1}{2.4}+...+\frac{1}{98.100}\right)\)
\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)+2.\left(\frac{1}{2}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(=2.\left(1-\frac{1}{101}\right)+2.\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(=2\cdot\frac{100}{101}+2\cdot\frac{49}{100}=\frac{200}{101}+\frac{49}{50}\)
câu b mk ko bk! xl bn nha!
mk nhầm
...
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)+\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{100}\right)\) 1/100)
= 1/2.(1-1/101) + 1/2.(1/2-1/100)
=1/2.100/101 + 1/2.49/100
= 50/101 + 49/200