Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1
a, \(A=\frac{1}{-x^2+2x-2}=\frac{1}{-\left(x^2-2x+1\right)-1}=\frac{1}{-\left(x-1\right)^2-1}\)
Vì \(-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2-1\le-1\Rightarrow A=\frac{1}{-\left(x-1\right)^2-1}\ge\frac{1}{-1}=-1\)
Dấu "=" xảy ra khi x=1
Vậy Amin=-1 khi x=1
b, \(B=\frac{2}{-4x^2+8x-5}=\frac{2}{-4\left(x^2-2x+1\right)-1}=\frac{2}{-4\left(x-1\right)^2-1}\ge\frac{2}{-1}=-2\)
Dấu "=" xảy ra khi x=1
Vậy Bmin=-2 khi x=1
bài 2:
a, \(A=\frac{3}{2x^2+2x+3}=\frac{3}{2\left(x^2+x+\frac{1}{4}\right)+\frac{5}{2}}=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\)
Vì \(2\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\Rightarrow A=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)
dấu "=" xảy ra khi x=-1/2
Vậy Amax=6/5 khi x=-1/2
b, \(B=\frac{5}{3x^2+4x+15}=\frac{5}{3\left(x^2+\frac{4}{3}x+\frac{4}{9}\right)+\frac{41}{3}}=\frac{5}{3\left(x+\frac{2}{3}\right)^2+\frac{41}{3}}\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)
Dấu '=" xảy ra khi x=-2/3
Vậy Bmax=15/41 khi x=-2/3
Ta có : x2 + 4x
= x2 + 4x + 4 - 4
= (x + 2)2 - 4
Mà ; (x + 2)2 \(\ge0\forall x\)
Nên : (x + 2)2 - 4 \(\ge-4\forall x\)
Vậy GTNN của biểu thức là -4 khi x = -2
Ta có : 4x2 - 4x - 1
= (2x)2 - 4x + 1 - 1
= (2x - 1)2 - 1
Mà : (2x - 1)2 \(\ge0\forall x\)
Nên : (2x - 1)2 - 1 \(\ge-1\forall x\)
Vậy GTNN của biểu thức là - 1 khi x = \(\frac{1}{2}\)
D = \(-\dfrac{5}{x^2-4x+7}\)
Vì: x2 - 4x + 7
= x2 - 4x + 4 + 3
= (x - 2)2 + 3 \(\ge\) 3 \(\forall\)x
\(\Rightarrow\) \(\dfrac{5}{\left(x-2\right)^2+3}\) \(\le\) \(\dfrac{5}{3}\) \(\forall\)x
\(\Rightarrow\) \(-\dfrac{5}{\left(x-2\right)^2+3}\)\(\ge\)-\(\dfrac{5}{3}\) \(\forall\)x
Dấu"=" xảy ra khi:
x - 2 = 0
\(\Rightarrow\) x = 2
Vậy.............
E = \(\dfrac{2x^2+4x+4}{x^2+2x+4}\)
Ta có:
\(\dfrac{2x^2+4x+4}{x^2+2x+4}\)
= \(\dfrac{2\left(x^2+2x+4\right)-4}{x^2+2x+4}\)
= 2 - \(\dfrac{4}{x^2+2x+4}\)
Vì:
x2 + 2x + 4
= x2 + 2x + 1 + 3
= (x + 1)2 + 3 \(\ge\) 3 \(\forall\)x
\(\Rightarrow\) \(\dfrac{4}{\left(x+1\right)^2+3}\) \(\le\) \(\dfrac{4}{3}\) \(\forall\)x
\(\Rightarrow\) 2 - \(\dfrac{4}{\left(x+1\right)^2+3}\) \(\le\) \(\dfrac{2}{3}\) \(\forall\)x
Dấu "=" xảy ra khi:
x + 1 = 0
\(\Rightarrow\) x = -1
Vậy...............
F = \(\dfrac{6x+8}{x^2+1}\)
= \(\dfrac{x^2+6x+9-x^2-1}{x^2+1}\)
= \(\dfrac{\left(x+3\right)^2-\left(x^2+1\right)}{x^2+1}\)
= \(\dfrac{\left(x+3\right)^2}{x^2+1}-1\) \(\ge\) -1 \(\forall\)x
Dấu "=" xảy ra khi:
(x + 3)2 = 0
\(\Rightarrow\) x + 3 = 0
\(\Rightarrow\) x = -3
Vậy.....................
a) Ta có: \(A=x^2-2x+5=\left(x^2-2x+1\right)+4\)
\(A=\left[x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right]+4\)
\(A=\left(x-\frac{1}{2}\right)^2+\frac{1}{4}+4=\left(x-\frac{1}{2}\right)^2+\frac{17}{4}\ge\frac{17}{4}\)
=>AMin=17/4
Dấu "=" xảy ra <=> x=1/2
b,\(E=-x^2+2x-3=-\left(x^2-2x+3\right)\)
Đặt \(M=x^2-2x+3\).dễ thấy E=-M
ta có: \(M=\left(x^2-2x+1\right)+2=\left(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right)+2=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}+2\)
\(M=\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Mà E=-M
=>\(E\le\frac{11}{4}\)
=>EMax=11/4
Dấu "=" xảy ra <=>x=1/2
\(a,x^2+2x+7\)
\(=x^2+2x+1+6\)
\(=\left(x+1\right)^2+6\)
\(V\text{ì}\left(x+1\right)^2\ge0\)
\(\left(x+1\right)^2+6\ge0+6\)
\(\left(x+1\right)^2+6\ge6\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+1\right)^2=0\)
\(x+1=0\)
\(x=-1\)
Vậy MinA=6 khi x=-1
b) \(x^2+x+1\)
\(=x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x+\dfrac{1}{2}\right)^2\ge0\)
\(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=0\)
\(x=\dfrac{1}{2}\)
a A=4x-x^2+3
=(x-2)^2-1
MIN A= -1 khi (x-2)^2=0
x-2=0
x=2
B=x-x^2
B=-x^2+x
-B=x^2-x
-B=(x-1/2)^2-1/4
B=-(x-1/2)^2+1/4
MAX B=1/4 khi -(x-1/2)^2=0
x-1/2=0
x=1/2
N=2x-2x^2-5
-N=2x^2-2x+5
-N=2(x^2-x+2)+1
-N=2{(x-1/2)^2+7/4}+1
-N=2(x-1/2)^2+7/2+1
-N=2(x-1/2)^2+9/2
N=-2(x-1/2)^2-9/2
MAX N=-9/2 khi -2(x-1/2)^2=0
x-1/2=0
x=1/2