Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : P = x2 - 2x + 5 = x2 - 2x + 1 + 4 = (x - 1)2 + 4
Vì \(\left(x-1\right)^2\ge0\forall x\)
Suy ra : \(P=\left(x-1\right)^2+4\ge4\forall x\)
Nên : Pmin = 4 khi x = 1
b) Ta có Q = 2x2 - 6x = 2(x2 - 3x) = 2(x2 - 3x + \(\frac{9}{4}-\frac{9}{4}\) ) = \(2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\)
Vì \(2\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
SUy ra ; \(Q=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Vậy \(Q_{min}=-\frac{9}{2}\) khi \(x=\frac{3}{2}\)
a. \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)
vì \(\left(x-1\right)^2\ge0\) với mọi x
=> (x-1)^2 +4 \(\ge\) vợi mọi x
Pmin=4 <=> x-1=0 <=>x=1
1.
b)\(M=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu = xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\) và \(y+3=0\)
\(\Leftrightarrow x=\frac{1}{2}\) và \(y=-3\)
Vậy GTNN của M là \(\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)và \(y=-3\)
Bài 2:
\(A=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1\)
\(A_{max}=-1\) khi \(x=2\)
\(B=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
\(B_{max}=7\) khi \(x=2\)
\(C=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
\(C_{max}=\frac{1}{4}\) khi \(x=\frac{1}{2}\)
\(D=-\left(x^2-2x+1\right)-\left(y^2-4y+4\right)+11\)
\(D=-\left(x-1\right)^2-\left(y-2\right)^2+11\le11\)
\(D_{max}=11\) khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
\(E=-\frac{1}{2}\left(4x^2-4x+1\right)-\frac{9}{2}=-\frac{1}{2}\left(2x-1\right)^2-\frac{9}{2}\le-\frac{9}{2}\)
\(E_{max}=-\frac{9}{2}\) khi \(x=\frac{1}{2}\)
Bài 1:
\(A=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1\)
\(A_{min}=1\) khi \(x+1=0\Leftrightarrow x=-1\)
\(B=\left(x-3\right)^2\ge0\)
\(B_{min}=0\) khi \(x=3\)
\(C=2\left(x^2-2.\frac{3}{2}x+\frac{9}{4}\right)+\frac{9}{2}=2\left(x-\frac{3}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)
\(C_{min}=\frac{9}{2}\) khi \(x=\frac{3}{2}\)
\(D=\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)
\(D=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(D_{min}=\frac{3}{4}\) khi \(\left\{{}\begin{matrix}x=\frac{1}{2}\\y=-3\end{matrix}\right.\)
Câu 1.
P = x2 - 2x + 5
= ( x2 - 2x + 1 ) + 4
= ( x - 1 )2 + 4 ≥ 4 ∀ x
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MinP = 4 <=> x = 1
Q = 2x2 - 6x
= 2( x2 - 3x + 9/4 ) - 9/2
= 2( x - 3/2 )2 - 9/2 ≥ -9/2 ∀ x
Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2
=> MinQ = -9/2 <=> x = 3/2
M = x2 + y2 - x + 6y + 10
= ( x2 - x + 1/4 ) + ( y2 + 6y + 9 ) + 3/4
= ( x - 1/2 )2 + ( y + 3 )2 + 3/4 ≥ 3/4 ∀ x
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)
=> MinM = 3/4 <=> x = 1/2 ; y = -3
Câu 2.
A = 4x - x2 + 3
= -( x2 - 4x + 4 ) + 7
= -( x - 2 )2 + 7 ≤ 7 ∀ x
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> MaxA = 7 <=> x = 2
B = x - x2
= -( x2 - x + 1/4 ) + 1/4
= -( x - 1/2 )2 + 1/4 ≤ 1/4 ∀ x
Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2
=> MaxB = 1/4 <=> x = 1/2
N = 2x - 2x2
= -2( x2 - x + 1/4 ) + 1/2
= -2( x - 1/2 )2 + 1/2 ≤ 1/2 ∀ x
Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2
=> MaxB = 1/2 <=> x = 1/2
Làm gần xong thì lỡ bấm out ra TT
\(P=x^2-2x+5=\left(x-1\right)^2+4\ge4\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy minP = 4 <=> x = 1
\(Q=2x^2-6x=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow2\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x=\frac{3}{2}\)
Vậy minQ = - 9/2 <=> x = 3/2
\(M=x^2+y^2-x+6y+10\)
\(=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)
Vì \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2\ge0\forall x\\\left(y+3\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)
Vậy minM = 3/4 <=> x = 1/2 và y = - 3
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
Ta có : x2 - 2x + 5
= x2 - 2x + 1 + 4
= (x - 1)2 + 4
Mà (x - 1)2 \(\ge0\forall x\)
Nên (x - 1)2 + 4 \(\ge4\forall x\)
Vậy GTNN của biểu thức là : 4 khi và chỉ khi x = 1
\(P=x^2-2x+5\)
\(P=x^2-2x+1+4\)
\(P=\left(x-1\right)^2+4\ge4\)
=> GTNN của P = 4
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)
Vậy................
1) a)
\(P=x^2-2x+5\)
\(=x^2-2x+4+1\)
\(=\left(x+2\right)^2+1\ge1\)
vậy min O =1 khi x= -2
1)
c) K = 4x - x2 - 5
= -x2 + 4x - 4 - 1
= - (x2 - 4x + 4) - 1
= - (x - 2)2 - 1
Vì (x - 2)2 \(\ge0\forall x\)
=> - (x - 2)2 \(\le0\forall x\)
=> -(x - 2)2 \(\le-1\forall x\)
Vậy GTLN của biểu thức là - 1 khi và chi x = 2
Câu 1:
b, \(Q=x^2+y^2-x+6y+10\)
\(Q=x^2-\dfrac{1}{2}x-\dfrac{1}{2}x+\dfrac{1}{4}+y^2+3y+3y+9+\dfrac{3}{4}\)
\(Q=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)
Với mọi giá trị của x;y ta có:
\(\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)
\(\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Hay \(Q\ge\dfrac{3}{4}\) với mọi giá trị của x;y
Để \(Q=\dfrac{3}{4}\) thì \(\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
Vậy..............
Câu a;c tách như câu b,
Câu 2:
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-2x-2x+4-7\right)\)
\(=-\left[\left(x-2\right)^2-7\right]\)
Với mọi giá trị của x ta có:
\(\left(x-2\right)^2-7\ge-7\)
\(-\left[\left(x-2\right)^2-7\right]\ge7\)
Hay \(A=7\) với mọi giá trị của x
Để \(A=7\) thì \(-\left[\left(x-2\right)^2-7\right]=7\)
\(\Rightarrow\left(x-2\right)^2=0\Rightarrow x=2\)
Vậy..............
b,c làm tương tự
Chúc bạn học tốt!!!
Tớ làm đc 1b và 2ab thôi