Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.tìm gtnn
A=x2+9x+56
B=x2-2x+15
C=9x2-12x
2.tìm gtln
D=-9x2+x
E=-x2+3x-5
F=-16x2-5x
Giúp mjk vs mn ơi:33
\(A=x^2+9x+56=\left(x+\frac{9}{2}\right)^2+\frac{143}{4}\)
Vì \(\left(x+\frac{9}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{9}{2}\right)^2+\frac{143}{4}\ge\frac{143}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{9}{2}\right)^2=0\Leftrightarrow x=-\frac{9}{2}\)
Vậy minA = 143/4 <=> x = - 9/2
\(B=x^2-2x+15=\left(x-1\right)^2+14\)
Vì \(\left(x-1\right)^2\ge0\)\(\Rightarrow\left(x-1\right)^2+14\ge14\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy minB = 14 <=> x = 1
\(C=9x^2-12x=9\left(x-\frac{2}{3}\right)^2-4\)
Vì \(\left(x-\frac{2}{3}\right)^2\ge0\forall x\)\(\Rightarrow9\left(x-\frac{2}{3}\right)^2-4\ge-4\)
Dấu "=" xảy ra \(\Leftrightarrow9\left(x-\frac{2}{3}\right)^2=0\Leftrightarrow x-\frac{2}{3}=0\Leftrightarrow x=\frac{2}{3}\)
Vậy minC = - 4 <=> x = 2/3
Bài 1.
A = x2 + 9x + 56
= ( x2 + 9x + 81/4 ) + 143/4
= ( x + 9/2 )2 + 143/4
( x + 9/2 )2 ≥ 0 ∀ x => ( x + 9/2 )2 + 143/4 ≥ 143/4
Đẳng thức xảy ra <=> x + 9/2 = 0 => x = -9/2
=> MinA = 143/4 <=> x = -9/2
B = x2 - 2x + 15
= ( x2 - 2x + 1 ) + 14
= ( x - 1 )2 + 14
( x - 1 )2 ≥ 0 ∀ x => ( x - 1 )2 + 14 ≥ 14
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MinB = 14 <=> x = 1
C = 9x2 - 12x
= 9( x2 - 4/3x + 4/9 ) - 4
= 9( x - 2/3 )2 - 4
9( x - 2/3 )2 ≥ 0 ∀ x => 9( x - 2/3 )2 - 4 ≥ -4
Đẳng thức xảy ra <=> x - 2/3 = 0 => x = 2/3
=> MinC = -4 <=> x = 2/3
Bài 2.
D = -9x2 + x
= -9( x2 - 1/9x + 1/324 ) + 1/36
= -9( x - 1/18 )2 + 1/36
-9( x - 1/18 )2 ≤ 0 ∀ x => -9( x - 1/18 )2 + 1/36 ≤ 1/36
Đẳng thức xảy ra <=> x - 1/18 = 0 => x = 1/18
=> MaxD = 1/36 <=> x = 1/18
E = -x2 + 3x - 5
= -( x2 - 3x + 9/4 ) - 11/4
= -( x - 3/2 )2 - 11/4
-( x - 3/2 )2 ≤ 0 ∀ x => -( x - 3/2 )2 - 11/4 ≤ -11/4
Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2
=> MaxE = -11/4 <=> x = 3/2
F = -16x2 - 5x
= -16( x2 + 5/16x + 25/1024 ) + 25/64
= -16( x + 5/32 )2 + 25/64
-16( x + 5/32 )2 ≤ 0 ∀ x => -16( x + 5/32 )2 + 25/64 ≤ 25/64
Đẳng thức xảy ra <=> x + 5/32 = 0 => x = -5/32
=> MaxF = 25/64 <=> x = -5/32
a) đặt \(A=x^2+x+1\)
\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}+1\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=' xảy ra khi \(x=-\dfrac{1}{2}\)
Vậy \(MIN_A=\dfrac{3}{4}\) khi \(x=-\dfrac{1}{2}\)
b) đặt \(B=2+x-x^2\)
\(=-x^2+x+2\)
\(=-\left(x^2-x-2\right)\)
\(=-\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2\right]\)
\(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\right]\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\)
Dấu "=" xảy ra khi \(x=\dfrac{1}{2}\)
Vậy \(MAX_B=\dfrac{9}{4}\) khi \(x=\dfrac{1}{2}\)
c) đặt \(C=x^2-4x+1\)
\(=x^2-2\cdot x\cdot2+2^2-4+1\)
\(=\left(x-2\right)^2-3\ge-3\)
Dấu "=" xảy ra khi \(x=2\)
Vậy \(MIN_c=-3\) khi \(x=2\)
d) đặt \(D=4x^2+4x+11\)
\(=\left(2x\right)^2+2\cdot2x\cdot1+1^2-1+11\)
\(=\left(2x+1\right)^2+10\ge10\)
Dấu "=" xảy ra khi \(x=-\dfrac{1}{2}\)
Vậy \(MIN_D=10\) khi \(x=-\dfrac{1}{2}\)
mấy câu còn lại tương tự
a. 5x.(12x+7)-3x.(20x-5)=-150
x=-3
b. ( 2x-1).(3-x)+(x+4).(2x-5)=20
x=43/10
c. 9x2-1+(3x-1)2=0
x=1/3
d. 3x.(x-2)-(3x+2).(x-1)=7
x=-5/2
e. (2x-1)2-(2x+5).(2x-5)=20
x=3/2
f. 4x2-5=4
x=3/2
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
\(A=x^2+12x+36=x^2+12x+36+3=\left(x+6\right)^2+3\ge3\)
Dấu '=' xảy ra khi x=-6
\(B=9x^2-12x+4-4=\left(3x-2\right)^2-4\ge-4\)
Dấu '=' xảy ra khi x=2/3
\(C=-x^2+4x+1\)
\(=-\left(x^2-4x-1\right)=-\left(x^2-4x+4-5\right)\)
\(=-\left(x-2\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi x=2
a: \(2x^4-3x^3+4x+1⋮x^2-1\)
\(\Leftrightarrow2x^4-2x^2-3x^3+3x+2x^2-2+x+3⋮x^2-1\)
\(\Leftrightarrow x+3⋮x^2-1\)
\(\Leftrightarrow x^2-9⋮x^2-1\)
\(\Leftrightarrow x^2-1\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
\(\Leftrightarrow x\in\left\{\sqrt{2};-\sqrt{2};0;\sqrt{3};-\sqrt{3};\sqrt{5};-\sqrt{5};3;-3\right\}\)
b: \(x^5+2x^4+3x^2+x-3⋮x^2+1\)
\(\Leftrightarrow x^5+x^3+2x^4+2x^2-x^3-x+x^2+1+2x-4⋮x^2+1\)
\(\Leftrightarrow2x-4⋮x^2+1\)
\(\Leftrightarrow4x^2-16⋮x^2+1\)
\(\Leftrightarrow4x^2+4-20⋮x^2+1\)
\(\Leftrightarrow x^2+1\in\left\{1;2;4;5;10;20\right\}\)
hay \(x\in\left\{0;1;-1;\sqrt{3};-\sqrt{3};2;-2;3;-3;\sqrt{19};-\sqrt{19}\right\}\)
c, C= 4x^2 -12x +25
= 4x^2 -12x + 9+16
= (2x -3)^2 +16
ta có (2x-3)^2 >,= 0 với mọi x
=> (2x-3)^2 +16 >,=16 với mọi x
dấu bằng xảy ra khi (2x-3) ^2 =0
=> 2x-3 = 0
=> 2x =3
=> x =1,5
vậy .............
d, D = 2x^2 -8x -5
D= 2(x^2 -4x +4) -13
D= 2(x-2)^2 -13
ta có 2 (x-2)^2 >,= 0 với mọi x
=> 2(x-2)^2 -13 >,= -13 với mọi x
dấu = xảy ra khi 2(x-2)^2 =0
=> (x-2)^2=0
=>x-2 =0
=> x=2
vậy .............
a)
$x^2-2x+5y^2-4y+2020=(x^2-2x+1)+5(y^2-\frac{4}{5}y+\frac{2^2}{5^2})+\frac{10091}{5}$
$=(x-1)^2+5(y-\frac{2}{5})^2+\frac{10091}{5}$
$\geq \frac{10091}{5}$
Vậy GTNN của biểu thức là $\frac{10091}{5}$. Giá trị này đạt được tại $(x-1)^2=(y-\frac{2}{5})^2=0$
$\Leftrightarrow x=1; y=\frac{2}{5}$
b)
\(B=(x-5)^2-(3x-7)^2=(x-5-3x+7)(x-5+3x-7)\)
\(=(2-2x)(4x-12)=8(1-x)(x-3)=8(x-3-x^2+3x)\)
\(=8(4x-3-x^2)=8[1-(x^2-4x+4)]=8[1-(x-2)^2]\)
Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $1-(x-2)^2\leq 1$
$\Rightarrow B=8[1-(x-2)^2]\leq 8$. Vậy GTLN của biểu thức là $8$ khi $x=2$
c)
$C=5-x^2+2x-9y^2-6y=5-(x^2-2x)-(9y^2+6y)$
$=7-(x^2-2x+1)-(9y^2+6y+1)=7-(x-1)^2-(3y+1)^2$
Vì $(x-1)^2\geq 0; (3y+1)^2\geq 0$ với mọi $x,y$ nên $C=7-(x-1)^2-(3y+1)^2\leq 7$
Vậy GTLN của $C$ là $7$. Giá trị này đạt được tại $(x-1)^2=(3y+1)^2=0$
$\Leftrightarrow x=1; y=\frac{-1}{3}$
d)
$D=-5x^2-9y^2-7x+18y-2015=-(5x^2+7x)-(9y^2-18y)-2015$
$=-5(x^2+\frac{7}{5}x+\frac{7^2}{10^2})-9(y^2-2y+1)-\frac{40071}{20}$
$=-5(x+\frac{7}{10})^2-9(y-1)^2-\frac{40071}{20}$
$\leq -\frac{40071}{20}$
Vậy GTLN của biểu thức là $\frac{-40071}{20}$ khi $x=-\frac{-7}{10}; y=1$
\(a,x^2+2x+7\)
\(=x^2+2x+1+6\)
\(=\left(x+1\right)^2+6\)
\(V\text{ì}\left(x+1\right)^2\ge0\)
\(\left(x+1\right)^2+6\ge0+6\)
\(\left(x+1\right)^2+6\ge6\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+1\right)^2=0\)
\(x+1=0\)
\(x=-1\)
Vậy MinA=6 khi x=-1
b) \(x^2+x+1\)
\(=x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x+\dfrac{1}{2}\right)^2\ge0\)
\(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=0\)
\(x=\dfrac{1}{2}\)
Bn tự lm theo phom đó rồi kết luận nhé. Mỏi tay ghê