Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A = 6 + 52 + 53 + 54 + ... + 51996 + 51997
A = 1 + 5 + 52 + 53 + ... + 51996 + 51997
5A = 5(1 + 5 + 52 + 53 + ... + 51996 + 51997)
5A = 5 + 52 + 53 + 54 + ... + 51997 + 51998
5A - A = (5 + 52 + 53 + 54 + ... + 51997 + 51998) - (1 + 5 + 52 + 53 + ... + 51996 + 51997)
4A = 51998 - 1
A = \(\frac{5^{1998}-1}{4}\)
A= 6 + 52+ 53+ 54 + ..... + 5 1996+ 51997
=>5A=5+52+53+54+...+51997+51998
=5A-A=(5+52+53+54+...51997+51998)-(1+5+52+53+...+51996+51997)
=4A=51998-1=>A=\(\frac{5^{1998}-1}{4}\)
Vậy ...
hc tốt
A=6+52+53+54+...+51996+51997
A = 1 + 5 + 52 + 53 + ... + 51996 + 51997
5A = 5 + 52 + 53 + 54 + ... + 51997 + 51998
5A - A = ( 5 + 52 + 53 + 54 + ... + 51997 + 51998 ) - ( 1 + 5 + 52 + 53 + ... + 51996 + 51997 )
4A = 51998 - 1
\(\Rightarrow A=\frac{5^{1998}-1}{4}\)
\(A=6+5^2+5^3+...+5^{1996}+5^{1997}\\ A=1+5+5^2+5^3+...+5^{1996}+5^{1997}\)
\(5A=5+5^2+5^3+...+5^{1996}+5^{1998}\)
\(5A-A=\left(5+5^2+5^3+...+5^{1996}+5^{1998}\right)-\left(1+5+5^2+5^3+...+5^{1996}+5^{1997}\right)\)
\(4A=5^{1998}-1\\ A=\frac{5^{1998}-1}{4}\)
Tính giá trị biểu thức:
a) x6 -50x5 +50x4 -50x3 +...+ 50 tại x= 49
b) 24. (52 +1).(54 +1).... (516 +1)
\(A=4x^2-2\left(y+2,5x^2\right)+x^2-4y\)
\(=4x^2-2y-5x^2+x^2-4y=-6y\)
\(B=\left(x+y\right).\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)-\left(x^5+y^5-8\right)\)
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5-x^5-y^5+8\)
\(=8\)
Vậy BT B ko phụ thuộc vào biến
câu sau tương tự
\(5x\left(x+1\right)-3\left(x-5\right)+4\left(3x-6\right)=2x^2-7\)
\(\Rightarrow5x^2+5x-3x+15+12x-24=2x^2-7\)
\(\Rightarrow5x^2+14x-9=2x^2-7\Rightarrow5x^2+14x-9-2x^2+7=0\)
\(\Rightarrow3x^2+14x-2=0\)
\(\Rightarrow3\left(x^2+\frac{14}{3}x-\frac{2}{3}\right)=0\Rightarrow x^2+2.x.\frac{7}{3}+\frac{49}{9}-\frac{55}{9}=0\)
\(\Rightarrow\left(x+\frac{7}{3}\right)^2=\frac{55}{9}\Rightarrow x+\frac{7}{3}\in\left\{\sqrt{\frac{55}{9}};-\sqrt{\frac{55}{9}}\right\}\Rightarrow x\in\left\{\sqrt{\frac{55}{9}}-\frac{7}{3};-\sqrt{\frac{55}{9}}-\frac{7}{3}\right\}\)
A = a2 + b2 = a2 + 2ab + b2 - 2ab = ( a + b )2 - 2ab = 52 - 2.6 = 25 - 12 = 13
B = a3 + b3 = a3 + 3a2b + 3ab2 + b3 - 3a2b - 3ab2 = ( a + b )3 - 3ab( a + b ) = 53 - 3.6.5 = 125 - 90 = 35
C = a4 + b4 = a4 + 2a2b2 + b4 - 2a2b2 = ( a2 + b2 )2 - 2a2b2 = [ ( a + b )2 - 2ab ]2 - 2( ab )2
= ( 52 - 2.6 )2 - 2.62
= ( 25 - 12 )2 - 2.36
= 132 - 72
= 169 - 72 = 97
Với x = 6 ta có
A= 65 - 7.64 + 7.63 - 7.62 + 7.6 - 1
= 65 - (6+1).64 + (6+1).63 - (6+1).62 + (6+1).6 - 1
= 65 - 65 - 64 + 64 + 63 - 63 - 62 + 62 + 6 - 1
= 5
Ta có: \(A=6+5^2+5^3+5^4+...+5^{1996}+5^{1997}=1+5+5^2+5^3+...+1^{1997}\)
\(\Rightarrow5A=5+5^2+5^3+5^4+...+5^{1997}+5^{1998}\)
\(\Rightarrow5A-A=\left(5+5^2+5^3+5^4+...+5^{1997}+5^{1998}\right)-\left(1+5+5^2+5^3+...+5^{1996}+5^{1997}\right)\)
\(\Rightarrow4A=5^{1998}-1\Rightarrow A=\dfrac{5^{1998}-1}{4}\)
Vậy ...