Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trôi hết đề : Câu 7
\(\left(3-\sqrt{2}\right)\)
câu 8:
\(P=\frac{1+\frac{4}{x-2}}{\frac{x^2-4}{2}}\) để tồn tại P \(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)(*)
Với đk (*)=>\(P=\frac{\left(x+2\right)}{\left(x-2\right)}.\frac{2}{\left(x-2\right)\left(x+2\right)}=\frac{2}{\left(x-2\right)^2}\)
\(A=4x^2-2\left(y+2,5x^2\right)+x^2-4y\)
\(=4x^2-2y-5x^2+x^2-4y=-6y\)
\(B=\left(x+y\right).\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)-\left(x^5+y^5-8\right)\)
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5-x^5-y^5+8\)
\(=8\)
Vậy BT B ko phụ thuộc vào biến
câu sau tương tự
\(5x\left(x+1\right)-3\left(x-5\right)+4\left(3x-6\right)=2x^2-7\)
\(\Rightarrow5x^2+5x-3x+15+12x-24=2x^2-7\)
\(\Rightarrow5x^2+14x-9=2x^2-7\Rightarrow5x^2+14x-9-2x^2+7=0\)
\(\Rightarrow3x^2+14x-2=0\)
\(\Rightarrow3\left(x^2+\frac{14}{3}x-\frac{2}{3}\right)=0\Rightarrow x^2+2.x.\frac{7}{3}+\frac{49}{9}-\frac{55}{9}=0\)
\(\Rightarrow\left(x+\frac{7}{3}\right)^2=\frac{55}{9}\Rightarrow x+\frac{7}{3}\in\left\{\sqrt{\frac{55}{9}};-\sqrt{\frac{55}{9}}\right\}\Rightarrow x\in\left\{\sqrt{\frac{55}{9}}-\frac{7}{3};-\sqrt{\frac{55}{9}}-\frac{7}{3}\right\}\)
bài 1:
a)\(A=x^3+y^3+xy=1^3+\left(-1\right)^3+1.\left(-1\right)=1-1-1=-1\)
b)\(B=\sqrt{x^2+y^2}=\sqrt{6^2+8^2}=\sqrt{36+64}=\sqrt{100}=\left|10\right|=10\)
c)\(C=10x+10y+15=10\left(x+y\right)+15=10.1+15=25\)
d)\(D=x^2y+y^2x+5=xy\left(x+y\right)+5=xy.0+5=5\)
e)\(E=4x+7x^2y^2+3y^4+5y^2=?????\)
Bài 2:
bạn chỉ cần tìm nhân tử chung r gộp lại dưới dạng tích
VD: 10x+5xy=5x(2+y)
c) Ta có a + b > 1 > 0 (1)
Bình phương 2 vế: \(\left(a+b\right)^2>1\) \(\Leftrightarrow\) \(a^2+2ab+b^2>1\) (2)
Mặt khác \(\left(a-b\right)^2\ge0\) \(\Rightarrow\) \(a^2-2ab+b^2\ge0\) (3)
Cộng từng vế của (2) và (3): \(2\left(a^2+b^2\right)>1\) \(\Rightarrow\) \(a^2+b^2>\frac{1}{2}\) (4)
Bình phương 2 vế của (4): \(a^4+2a^2b^2+b^4>\frac{1}{4}\) (5)
Mặt khác \(\left(a^2-b^2\right)^2\ge0\) \(\Rightarrow\) \(a^4-2a^2b^2+b^4\ge0\) (6)
Cộng từng vế của (5) và (6): \(2\left(a^4+b^4\right)>\frac{1}{4}\) \(\Rightarrow\) \(a^4+b^4>\frac{1}{8}\) (đpcm).
1/ Áp dụng hẳng đẳng thức \(\left(a-b\right)\left(a+b\right)=a^2-b^2\) là ra bạn nhé
\(A=\left[\left(3^2-1\right)\left(3^2+1\right)\right]\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left[\left(3^4-1\right)\left(3^4+1\right)\right]\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left[\left(3^8-1\right)\left(3^8+1\right)\right]\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left[\left(3^{16}-1\right)\left(3^{16}+1\right)\right]\left(3^{32}+1\right)\)
\(=\left(3^{32}-1\right)\left(3^{32}+1\right)\)
\(=3^{64}-1\)
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
5.\(C\text{ó}x^2-12=0\Rightarrow x^2=12\Rightarrow x=\sqrt{12}ho\text{ặc}x=-\sqrt{12}\)
Mà x>0\(\Rightarrow x=\sqrt{12}\)
6.Vì x-y=4\(\Rightarrow\left(x-y\right)^2=x^2-2xy+y^2=x^2-10+y^2=4^2=16\Rightarrow x^2+y^2=26\)
Có \(\left(x+y\right)^2=x^2+2xy+y^2=26+10=36=6^2=\left(-6\right)^2\)
Vì xy>0 và x>0 =>y>0=>x+y>0=>x+y=6
7. \(3x^2+7=\left(x+2\right)\left(3x+1\right)\)
\(3x^2+7=3x^2+7x+2\)
\(3x^2+7-3x^2-7x-2=0\)
-7x+5=0
-7x=-5
\(x=\frac{5}{7}\)
8.\(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)
\(\left(2x+1\right)^2-\left(2x+4\right)^2=9\)
(2x+1-2x-4)(2x+1+2x+4)=9
-3(4x+5)=9
4x+5=-3
4x=-8
x=-2
Còn câu 9 và 10 để mình nghiên cứu đã
Bài : 1 Ta có : (x - 2)3 + 6(x + 1)2 - x3 + 12 = 0
=> x3 - 6x2 + 12x - 8 + 6(x2 + 2x + 1) - x3 + 12 = 0
=> x3 - 6x2 + 12x - 8 + 6x2 + 12x + 6 - x3 + 12 = 0
=> 24x - 10 = 0
=> 24x = 10
=> x = 5/12
Vạy x = 5/12
Bài 4 : Ta có : M = x2 + 6x - 1
=> M = x2 + 6x + 9 - 10
=> M = (x + 3)2 - 10
Vì : \(\left(x+3\right)^2\ge0\forall x\)
Nên : M = (x + 3)2 - 10 \(\ge-10\forall x\)
Vậy Mmin = -10 khi x = -3
\(\left(x+y\right)=3\Leftrightarrow\left(x+y\right)^2=9\Leftrightarrow x^2+y^2+2xy=9\Leftrightarrow5+2xy=9\Leftrightarrow xy=2.\)
\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)=3.\left(5-2\right)=9\)
Câu 6:
\(\left(x-2016\right)^2\ge0\) với mọi x
\(\left(x+2017\right)^2\ge0\) với mọi y
\(\Rightarrow\left(x-2016\right)^2+\left(y+2017\right)^2=0\) Khi \(\left(x-2016\right)^2=0\Leftrightarrow x=2016\) và \(\left(x+2017\right)^2=0\Leftrightarrow x=-2017\)
\(\Rightarrow x+y=2016-2017=-1\)
Câu 7:
\(D=\left(x+y\right)^2-6\left(x+y\right)-15=\left(-9\right)^2-6.\left(-9\right)-15=120\)
\(Q=\left(x+y\right)^2-4\left(x+y\right)+1=3^2-4.3+1=-2\)
câu 5:
x2+y2=5 -> x2+2xy+ y2-2xy=5
-> (x+y)2 - 2xy = 5 -> 32 - 2xy = 5 ->xy = 2
có x3+ y3= (x+y).(x2-xy+y2)
= 3.( 5- 2)= 9
vậy x3+ y3 =9
câu 6:
( x - 2016)2 ≥ 0 dấu = xảy ra khi x=2016
( y + 2017 )2 ≥ 0 dấu bằng xảy ra khi y = 2016
-> ( x - 2016)2 + ( y + 2017 )2 ≥ 0 dấu bằng xảy ra khi x=2016, y = 2017
-> x+y=2016+2017=4033
câu 7:
a,
D = x2 +2xy +y2 - 6x - 6y -15= (x2 +2xy +y2) - (6x + 6y) -15= (x+y)2 - 6(x+y) - 15
D= (-9)2 -6.(-9)-15=120
b,
Q = x2 + 2xy + y2 - 4x - 4y +1 = (x2 + 2xy + y2) - (4x + 4y) +1
Q= (x+y)2-4.(x+y)+1
Q=32- 4.3 +1= -2
Câu 4:
D=55