K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2015

6a = 4b  = 3c => \(\frac{6a}{12}=\frac{4b}{12}=\frac{3c}{12}\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=t\)

=> a = 2t ; b = 3t ; c = 4t thay vào N ta có \(\frac{3.\left(2t\right)^2+6.\left(3t\right)^2-5\left(4t\right)^2}{2.\left(2t\right)^2-4.\left(3t\right)^2+3\left(4t\right)^2}=\frac{3.4.t^2+6.9.t^2-5.16.t^2}{2.4.t^2-4.9.t^2+3.16.t^2}=\frac{-14t^2}{20t^2}=-\frac{7}{10}\)

30 tháng 5 2017

Ta có:

6a = 4b = 3c

=> \(\dfrac{6a}{12}=\dfrac{4b}{12}=\dfrac{3c}{12}\)

=> \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)

=> \(\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}\)

Đặt \(\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}\)= k

=>\(\left\{{}\begin{matrix}a^2=4k\\b^2=9k\\c^2=16k\end{matrix}\right.\)

Thay \(\left\{{}\begin{matrix}a^2=4k\\b^2=9k\\c^2=16k\end{matrix}\right.\)vào biểu thức N ta được:

N = \(\dfrac{3a^2+6b^2-5c^2}{2a^2-4b^2+3c^2}\)

N = \(\dfrac{3.4k+6.9k-5.16k}{2.4k-4.9k+3.16k}\)

N = \(\dfrac{12k+54k-80k}{8k-36k+48k}\)

N = \(\dfrac{-14k}{20k}\)

N = \(\dfrac{-7}{10}\)

29 tháng 5 2017

\(N=\dfrac{3a^2+6b^2-5c^2}{2a^2-4b^2+3c^2}\) (1)

Ta có:

\(6a=4b=3c\Rightarrow\dfrac{6a}{12}=\dfrac{4b}{12}=\dfrac{3c}{12}\Rightarrow\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)

Đặt \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=k\Rightarrow\left\{{}\begin{matrix}a=2k\\b=3k\\c=4k\end{matrix}\right.\) (2)

Thay (2) vào (1) ta có:

\(\dfrac{3.\left(2k\right)^2+6.\left(3k\right)^2-5.\left(4k\right)^2}{2.\left(2k\right)^2-4.\left(3k\right)^2+3.\left(4k\right)^2}=\dfrac{3.4.k^2+6.9.k^2-5.16.k^2}{2.4.k^2-4.9.k^2+3.16.k^2}\)

\(=\dfrac{12k^2+54k^2-80k^2}{8k^2-36k^2+48k^2}=\dfrac{k^2.\left(12+54-80\right)}{k^2.\left(8-36+48\right)}=\dfrac{-14}{20}=\dfrac{-7}{10}\)

Vậy giá trị của biểu thức N là \(\dfrac{-7}{10}\)

Chúc bạn học tốt!!!

29 tháng 5 2017

thanks bạn

29 tháng 5 2017

\(6a=4b=3c\Leftrightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)

Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\Rightarrow\hept{\begin{cases}a=2k\\b=3k\\c=4k\end{cases}}\)

xong bạn thay vô biểu thức N rút gọn là ra

9 tháng 5 2018

xy3+4xy3-3xy3

=5xy3-3xy3 = 2xy3

tươg tự

Bài 2 : Thay zô có j kó đâu ==

11 tháng 11 2019

ta cs a/b=c/d=>a/c=b/d

=>2a+3b/2c+3d=3a-4b/3c-4d

=>2a+3b/3a-4b=2c+3d/3c-4d

=>bai toan dc c/m

Cau b tuong tu nha ban

don't forget tick me

11 tháng 11 2019

a) Ta có \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a+3b}{2c+3d}\) (1).

\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a-4b}{3c-4d}\) (2).

Từ (1) và (2) \(\Rightarrow\frac{2a+3b}{2c+3d}=\frac{3a-4b}{3c-4d}.\)

\(\Rightarrow\frac{2a+3b}{3a-4b}=\frac{2c+3d}{3c-4d}\left(đpcm\right).\)

Chúc bạn học tốt!

25 tháng 12 2017

trang mấy

12 tháng 11 2016

Giải:

Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\)

\(\Rightarrow a=2k,b=3k,c=4k\)

Ta có: \(\frac{a^2+b^2+2c^2}{a^2-4b^2+c^2}\)

\(=\frac{\left(2k\right)^2+\left(3k\right)^2+2\left(4k\right)^2}{\left(2k\right)^2-4\left(3k\right)^2+\left(4k\right)^2}\)

\(=\frac{2^2.k^2+3^2.k^2+2.4^2.k^2}{2^2.k^2-4.3^2.k^2+4^2.k^2}\)

\(=\frac{4.k^2+9.k^2+32.k^2}{4.k^2-36.k^2+16.k^2}\)

\(=\frac{k^2.\left(4+9+32\right)}{k^2.\left(4-36+16\right)}\)

\(=\frac{45}{-16}\)

 

12 tháng 11 2016

\(A=\frac{a^2+b^2+2c^2}{a^2-4b^2+c^2}\)

Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\Rightarrow a=2k;b=3k;c=4k\)

Suy ra \(A=\frac{\left(2k\right)^2+\left(3k\right)^2+2\left(4k\right)^2}{\left(2k\right)^2-4\left(3k\right)^2+\left(4k\right)^2}=\frac{4k^2+9k^2+2\cdot16k^2}{4k^2-4\cdot9k^2+16k^2}\)

\(=\frac{k^2\left(4+9+32\right)}{k^2\left(4-36+16\right)}=\frac{45}{-16}=-\frac{45}{16}\)