K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2019

c,C= \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\left(x\ge1\right)\)

=\(\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)

=\(\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|\) (1)

TH1: \(\sqrt{x-1}< 1\) hay \(1\le x< 2\)

Từ (1)=>C= \(\sqrt{x-1}+1+1-\sqrt{x-1}\)=2

TH2: \(\sqrt{x-1}\ge1\) hay \(x\ge2\)

Từ (1) =>C=\(\sqrt{x-1}+1+\sqrt{x-1}-1\)=\(2\sqrt{x-1}\)

d, D=\(\sqrt{13+30\sqrt{2}+\sqrt{9+4\sqrt{2}}}=\sqrt{13+30\sqrt{2}+\sqrt{8+2\sqrt{8}+1}}=\sqrt{13+30\sqrt{2}+\sqrt{\left(\sqrt{8}+1\right)^2}}\)

=\(\sqrt{13+30\sqrt{2}+\sqrt{8}+1}=\sqrt{14+30\sqrt{2}+2\sqrt{2}}\)

=\(\sqrt{14+32\sqrt{2}}\)

8 tháng 10 2019

a)\(\frac{x-y}{\sqrt{x}-\sqrt{y}}=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}=\sqrt{x}+\sqrt{y}\)

b)\(\frac{x-2\sqrt{x}+1}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)

30 tháng 7 2018

mk giải 1 bài lm mẩu nha .

+) ta có : \(A=x-12\sqrt{x}\Leftrightarrow x-12\sqrt{x}-A=0\)

vì phương trình này luôn có nghiệm \(\Leftrightarrow\Delta'\ge0\)

\(\Leftrightarrow6^2+A\ge0\Leftrightarrow A\ge-36\)

vậy giá trị nhỏ nhất của \(A\)\(-36\) dấu "=" xảy ra khi \(\sqrt{x}=\dfrac{-b'}{a}=\dfrac{6}{1}=6\Leftrightarrow x=36\)

mấy câu còn lại bn chuyển quế đưa về phương trình bật 2 theo \(x\) rồi giải như trên là đc :

30 tháng 7 2018

lộn ! là phương trình bật 2 đối với ẩn là \(\sqrt{x}\) nha :

DƯƠNG PHAN KHÁNH DƯƠNG

4 tháng 6 2019

Ta có:\(x\ge\sqrt{2}\Rightarrow x^2\ge2\Rightarrow\sqrt{x^2-1}-1\ge0\) (*)

\(A=\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}\)

\(A=\sqrt{x^2-1+2\sqrt{x^2-1}+1}-\sqrt{x^2-1-2\sqrt{x^2-1}+1}\)

\(A=\sqrt{\left(\sqrt{x^2-1}+1\right)^2}-\sqrt{\left(\sqrt{x^2-1}-1\right)^2}\)

Kết hợp với (*), ta có:

\(A=\sqrt{x^2-1}+1-\left(\sqrt{x^2-1}-1\right)=2\)

Vậy ...

5 tháng 6 2019

bạn có thể giải thích giúp mình làm sao ra được khúc A=\(\sqrt{x^2-1+1}\)\(-\left(\sqrt{x^2-1-1}\right)\) vậy

a: \(=\sqrt{4+2+\sqrt{3}}=\sqrt{6+\sqrt{3}}\)

c: \(=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}\)

\(=\sqrt{13+30\left(\sqrt{2}+1\right)}\)

\(=\sqrt{43+30\sqrt{2}}\)

d: \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)

\(=\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|\)

\(=\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|\)

TH1: x>=2

\(D=\sqrt{x-1}+1+\sqrt{x-1}-1=2\sqrt{x-1}\)

TH2: 0<=x<2

\(D=\sqrt{x-1}+1+1-\sqrt{x-1}=2\)

 

30 tháng 7 2018

+) ta có : \(N=\dfrac{\sqrt{8-\sqrt{15}}}{\sqrt{30}-\sqrt{2}}=\dfrac{\sqrt{16-2\sqrt{15}}}{\sqrt{2}\left(\sqrt{30}-\sqrt{2}\right)}=\dfrac{\sqrt{\left(\sqrt{15}-1\right)^2}}{2\left(\sqrt{15}-1\right)}\)

\(=\dfrac{\sqrt{15}-1}{2\left(\sqrt{15}-1\right)}=\dfrac{1}{2}\)

+) ta có : \(P=\left(\dfrac{8-x\sqrt{x}}{2-\sqrt{x}}+2\sqrt{x}\right)\left(\dfrac{2-\sqrt{x}}{2+\sqrt{x}}\right)^2\)

\(\Leftrightarrow P=\left(\dfrac{\left(2-\sqrt{x}\right)\left(4+2\sqrt{x}+x\right)}{2-\sqrt{x}}+2\sqrt{x}\right)\left(\dfrac{2-\sqrt{x}}{2+\sqrt{x}}\right)^2\) \(\Leftrightarrow P=\left(4+2\sqrt{x}+x+2\sqrt{x}\right)\left(\dfrac{2-\sqrt{x}}{2+\sqrt{x}}\right)^2\) \(\Leftrightarrow P=\left(2+\sqrt{x}\right)^2\dfrac{\left(2-\sqrt{x}\right)^2}{\left(2+\sqrt{x}\right)^2}=\left(2-\sqrt{x}\right)^2\)

30 tháng 7 2018

<=>N=\(\dfrac{\sqrt{16-2\sqrt{15}}}{\sqrt{60}-2}\)

<=>N=\(\dfrac{\sqrt{\left(\sqrt{15}-1\right)^2}}{2\sqrt{15}-2}\)

<=>N=\(\dfrac{\sqrt{15}-1}{2\left(\sqrt{15}-1\right)}\)

<=>N=\(\dfrac{1}{2}\)

P=\(\left(\dfrac{8-x\sqrt{x}}{2-\sqrt{x}}+2\sqrt{x}\right)\left(\dfrac{2-\sqrt{x}}{2+\sqrt{x}}\right)^2\)

P=\(\left(\dfrac{8-x\sqrt{x}+4\sqrt{x}-2x}{2-\sqrt{x}}\right)\left(\dfrac{2-\sqrt{x}}{2+\sqrt{x}}\right)^2\)

P=\(\dfrac{8+3\sqrt{x}+x}{2-\sqrt{x}}.\dfrac{\left(2-\sqrt{x}\right)^2}{\left(2+\sqrt{x}\right)^2}\)

P=\(\dfrac{\left(8+3\sqrt{x}+x\right)\left(2-\sqrt{x}\right)}{4+4\sqrt{x}+x}\)