Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{99}-\frac{1}{99.97}-\frac{1}{97.95}-...-\frac{1}{5.3}-\frac{1}{3}\\ =\frac{1}{99}-\left(\frac{1}{99.97}+\frac{1}{97.95}+...+\frac{1}{5.3}+\frac{1}{3.1}\right)\\ =\frac{1}{99}-\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{95.97}+\frac{1}{97.99}\right)\\ =\frac{1}{99}-\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{95}-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\right)\\ =\frac{1}{99}-\frac{1}{2}.\left(1-\frac{1}{99}\right)\\ =\frac{1}{99}-\frac{1}{2}.\frac{98}{99}\\ =\frac{-16}{33}\)
A=-(1/1.3+1/3.5+1/5.7+...+1/97.99)
A=-1/2.(2/1.3+2/3.5+2/5.7+...+2/97.99)
A=-1/2.(1-1/3+1/3-1/5+...+1/97-1/99)
A=-1/2.(1-1/99)=-1/2.98/99
A=(tự bấm máy tính nha)
Ta có \(A=\dfrac{1}{99\cdot97}-\dfrac{1}{97\cdot95}-...-\dfrac{1}{3\cdot1}\)
\(\Leftrightarrow2A=\dfrac{2}{99\cdot97}-\dfrac{2}{97\cdot95}-...-\dfrac{2}{3\cdot1}\)
\(=-\dfrac{1}{99}+\dfrac{1}{97}-\dfrac{1}{97}+\dfrac{1}{95}-...-\dfrac{1}{3}+1\)
\(=-\dfrac{1}{99}+1=\dfrac{98}{99}\)
\(\Rightarrow A=\dfrac{49}{99}\)
\(A=\dfrac{1}{99.97}-\dfrac{1}{97.95}-...-\dfrac{1}{5.3}-\dfrac{1}{3.1}\)
\(=\dfrac{1}{99.97}-\left(\dfrac{1}{97.95}+...+\dfrac{1}{5.3}+\dfrac{1}{3.1}\right)\)
Đặt \(B=\dfrac{1}{97.95}+...+\dfrac{1}{5.3}+\dfrac{1}{3.1}\)
\(B=\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{95.97}\)
\(2B=\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{95.97}\)
\(2B=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{95}-\dfrac{1}{97}\)
\(2B=1-\dfrac{1}{97}\)
\(2B=\dfrac{96}{97}\)
\(B=\dfrac{96}{97}:2=\dfrac{48}{97}\)
\(\Rightarrow A=\dfrac{1}{99.97}-B=\dfrac{1}{9603}-\dfrac{48}{97}=\dfrac{-4751}{9603}\)
Câu a, b phân k ra là ok
\(c)\) \(A=\frac{-1}{20}+\frac{-1}{30}+\frac{-1}{42}+\frac{-1}{56}+\frac{-1}{72}+\frac{-1}{90}\)
\(A=\left(-1\right)\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)
\(A=\left(-1\right)\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(A=\left(-1\right)\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=\left(-1\right)\left(\frac{1}{4}-\frac{1}{10}\right)\)
\(A=\left(-1\right).\frac{3}{20}\)
\(A=\frac{-3}{20}\)
Vậy \(A=\frac{-3}{20}\)
Chúc bạn học tốt ~
\(B=\dfrac{\left(\dfrac{1}{2}\right)^{10}\cdot5-\left(\dfrac{1}{2}\right)^{10}\cdot3}{\dfrac{1}{2^{10}}\cdot\dfrac{1}{3}-\dfrac{1}{2^{11}}}=\dfrac{\left(\dfrac{1}{2}\right)^9}{\left(\dfrac{1}{2}\right)^{10}\cdot\dfrac{-1}{6}}=\dfrac{1}{-\dfrac{1}{12}}=-12\)
=> -A = \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{95.97}-\frac{1}{97.99}\)
=> -2A = \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{95.97}-\frac{2}{97.99}\)
=> \(-2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{95}-\frac{1}{97}-\frac{1}{97}+\frac{1}{99}\)
=> \(-2A=1-\frac{1}{97}-\frac{1}{97}+\frac{1}{99}=\frac{9502}{9603}\)
=> \(A=\frac{9502}{9603}:\left(-2\right)=-\frac{4751}{9603}\)