Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> -A = \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{95.97}-\frac{1}{97.99}\)
=> -2A = \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{95.97}-\frac{2}{97.99}\)
=> \(-2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{95}-\frac{1}{97}-\frac{1}{97}+\frac{1}{99}\)
=> \(-2A=1-\frac{1}{97}-\frac{1}{97}+\frac{1}{99}=\frac{9502}{9603}\)
=> \(A=\frac{9502}{9603}:\left(-2\right)=-\frac{4751}{9603}\)
Ta có \(A=\dfrac{1}{99\cdot97}-\dfrac{1}{97\cdot95}-...-\dfrac{1}{3\cdot1}\)
\(\Leftrightarrow2A=\dfrac{2}{99\cdot97}-\dfrac{2}{97\cdot95}-...-\dfrac{2}{3\cdot1}\)
\(=-\dfrac{1}{99}+\dfrac{1}{97}-\dfrac{1}{97}+\dfrac{1}{95}-...-\dfrac{1}{3}+1\)
\(=-\dfrac{1}{99}+1=\dfrac{98}{99}\)
\(\Rightarrow A=\dfrac{49}{99}\)
\(A=\dfrac{1}{99.97}-\dfrac{1}{97.95}-...-\dfrac{1}{5.3}-\dfrac{1}{3.1}\)
\(=\dfrac{1}{99.97}-\left(\dfrac{1}{97.95}+...+\dfrac{1}{5.3}+\dfrac{1}{3.1}\right)\)
Đặt \(B=\dfrac{1}{97.95}+...+\dfrac{1}{5.3}+\dfrac{1}{3.1}\)
\(B=\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{95.97}\)
\(2B=\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{95.97}\)
\(2B=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{95}-\dfrac{1}{97}\)
\(2B=1-\dfrac{1}{97}\)
\(2B=\dfrac{96}{97}\)
\(B=\dfrac{96}{97}:2=\dfrac{48}{97}\)
\(\Rightarrow A=\dfrac{1}{99.97}-B=\dfrac{1}{9603}-\dfrac{48}{97}=\dfrac{-4751}{9603}\)
\(\frac{1}{99}-\frac{1}{99.97}-\frac{1}{97.95}-...-\frac{1}{5.3}-\frac{1}{3}\\ =\frac{1}{99}-\left(\frac{1}{99.97}+\frac{1}{97.95}+...+\frac{1}{5.3}+\frac{1}{3.1}\right)\\ =\frac{1}{99}-\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{95.97}+\frac{1}{97.99}\right)\\ =\frac{1}{99}-\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{95}-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\right)\\ =\frac{1}{99}-\frac{1}{2}.\left(1-\frac{1}{99}\right)\\ =\frac{1}{99}-\frac{1}{2}.\frac{98}{99}\\ =\frac{-16}{33}\)
A=-(1/1.3+1/3.5+1/5.7+...+1/97.99)
A=-1/2.(2/1.3+2/3.5+2/5.7+...+2/97.99)
A=-1/2.(1-1/3+1/3-1/5+...+1/97-1/99)
A=-1/2.(1-1/99)=-1/2.98/99
A=(tự bấm máy tính nha)
lam j co tru o dang trc 1/99*97 sai tram trong