Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> -A = \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{95.97}-\frac{1}{97.99}\)
=> -2A = \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{95.97}-\frac{2}{97.99}\)
=> \(-2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{95}-\frac{1}{97}-\frac{1}{97}+\frac{1}{99}\)
=> \(-2A=1-\frac{1}{97}-\frac{1}{97}+\frac{1}{99}=\frac{9502}{9603}\)
=> \(A=\frac{9502}{9603}:\left(-2\right)=-\frac{4751}{9603}\)
A=-(1/1.3+1/3.5+1/5.7+...+1/97.99)
A=-1/2.(2/1.3+2/3.5+2/5.7+...+2/97.99)
A=-1/2.(1-1/3+1/3-1/5+...+1/97-1/99)
A=-1/2.(1-1/99)=-1/2.98/99
A=(tự bấm máy tính nha)
\(\frac{1}{99}-\frac{1}{99.97}-\frac{1}{97.95}-...-\frac{1}{5.3}-\frac{1}{3}\\ =\frac{1}{99}-\left(\frac{1}{99.97}+\frac{1}{97.95}+...+\frac{1}{5.3}+\frac{1}{3.1}\right)\\ =\frac{1}{99}-\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{95.97}+\frac{1}{97.99}\right)\\ =\frac{1}{99}-\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{95}-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\right)\\ =\frac{1}{99}-\frac{1}{2}.\left(1-\frac{1}{99}\right)\\ =\frac{1}{99}-\frac{1}{2}.\frac{98}{99}\\ =\frac{-16}{33}\)
2
a. \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
=\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
=\(\dfrac{1}{2}-\dfrac{1}{100}\)
=\(\dfrac{49}{100}\)
1/
a) ta có \(\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{97.100}=\dfrac{1}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{97.100}\right)\)
\(=\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{3}.\dfrac{99}{100}=\dfrac{33}{100}\)
⇒ \(\dfrac{33}{100}=\dfrac{0,33x}{2009}\)
⇒ \(\dfrac{33}{100}=\dfrac{0,33}{2009}.x\Rightarrow x=\dfrac{33}{100}:\dfrac{0,33}{2009}=2009\)
b,1 + 1/3 + 1/6 + 1/10 + ... + 2/x(x+1)=1 1991/1993
2 + 2/6 + 2/12 + 2/20 + ... + 2/x(x+1) = 3984/1993
2.(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/x(x+1) = 3984/1993
2.(1 − 1/2 + 1/2 − 1/3 + ... + 1/x − 1/x+1)=3984/1993
2.(1 − 1/x+1) = 3984/1993
1 − 1/x + 1= 3984/1993 :2
1 − 1/x+1 = 1992/1993
1/x+1 = 1 − 1992/1993
1/x+1=1/1993
<=>x+1 = 1993
<=>x+1=1993
<=> x+1=1993
<=> x = 1993-1
<=> x = 1992
Ta có \(A=\dfrac{1}{99\cdot97}-\dfrac{1}{97\cdot95}-...-\dfrac{1}{3\cdot1}\)
\(\Leftrightarrow2A=\dfrac{2}{99\cdot97}-\dfrac{2}{97\cdot95}-...-\dfrac{2}{3\cdot1}\)
\(=-\dfrac{1}{99}+\dfrac{1}{97}-\dfrac{1}{97}+\dfrac{1}{95}-...-\dfrac{1}{3}+1\)
\(=-\dfrac{1}{99}+1=\dfrac{98}{99}\)
\(\Rightarrow A=\dfrac{49}{99}\)
\(A=\dfrac{1}{99.97}-\dfrac{1}{97.95}-...-\dfrac{1}{5.3}-\dfrac{1}{3.1}\)
\(=\dfrac{1}{99.97}-\left(\dfrac{1}{97.95}+...+\dfrac{1}{5.3}+\dfrac{1}{3.1}\right)\)
Đặt \(B=\dfrac{1}{97.95}+...+\dfrac{1}{5.3}+\dfrac{1}{3.1}\)
\(B=\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{95.97}\)
\(2B=\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{95.97}\)
\(2B=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{95}-\dfrac{1}{97}\)
\(2B=1-\dfrac{1}{97}\)
\(2B=\dfrac{96}{97}\)
\(B=\dfrac{96}{97}:2=\dfrac{48}{97}\)
\(\Rightarrow A=\dfrac{1}{99.97}-B=\dfrac{1}{9603}-\dfrac{48}{97}=\dfrac{-4751}{9603}\)