Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dat A=12-22+.....-20162
-> -A=22-12+42-32+62-52...+20162-20152
-A=(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)...+(2016-2015)(2016+2015)
-A=3+7+11+...+4031=[(4031-3):4+1]:2 x (3+4031)=2033136
A=-2033136
\(vt=1+2015+2015^2+2015^3+2015^4+2015^5+2015^6+2015^7\)
\(=\left(1+2015\right)+\left(2015^2+2015^3\right)+\left(2015^4+2015^5\right)+\left(2015^6+2015^7\right)\)
\(=1\left(1+2015\right)+2015^2\left(1+2015\right)+2015^4\left(1+2015\right)+2015^6\left(1+2015\right)\)
\(=\left(2015+1\right)\left(1+2015^2+2015^4+2015^6\right)\)
\(=2016\left(1+2015^2+2015^4+2015^6\right)\)
\(=2016\left[\left(1+2015^2\right)+\left(2015^4+2015^6\right)\right]\)
\(=2016\left[1\left(1+2015^2\right)+2015^{2014}\left(1+2015^2\right)\right]=vp\left(đpcm\right)\)
\(=2016\left(1+2015^{2014}\right)\left(1+2015^{2012}\right)\)
\(x^2+y^2+z^2=xy+yz+xz\)
\(\Leftrightarrow x^2+y^2+z^2-xy-yz-xz=0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
\(\Rightarrow x=y=z\)
Mà \(x^{2015}+y^{2015}+z^{2015}=3^{2016}\Rightarrow x^{2015}+x^{2015}+x^{2015}=3^{2016}\)
\(\Leftrightarrow3x^{2015}=3^{2016}\Leftrightarrow x^{2015}=3^{2015}\Rightarrow x=3\)
Vậy \(x=y=z=3\)
\(a^2+b^2+c^2=1\Rightarrow a^2,b^2,c^2\le1\)\(\Rightarrow a,b,c\le1\)
Ta lại có: \(a^2+b^2+c^2=a^3+b^3+c^3\)
\(\Leftrightarrow a^3-a^2+b^3-b^2+c^3-c^2=0\)
\(\Leftrightarrow a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)=0\)
Mà \(a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)\le0\forall a,b,c\)(vì \(a^2,b^2,c^2\le0\) và \(a,b,c\le1\))
Suy ra ta phải có: \(a^2\left(a-1\right)=b^2\left(b-1\right)=c^2\left(c-1\right)=0\)
Kết hợp gt suy ra 3 số a,b,c phải là 1 số bằng 1 và 2 số còn lại bằng 0
Vì a,b,c vai trò như nhau nên giả sử \(a=1\Rightarrow b=c=0\)
Khi đó \(A=0^{2014}+1^{2015}+1^{2016}=1+1=2\)
a, A = 1+2+22+...+22016
2A = 2+22+23+....+22017
=> 2A - A = 22017 - 1
=> A = 22017 - 1
b, B = 5+53+55+....+52015
52B = 53+55+57+....+52017
24B = 52B - B = 52017 - 5
=> B = \(\frac{5^{2017}-5}{24}\)