K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2015

x=2015

=> x+1=2016

=> A=x2016-(x+1).x2015+(x+1).x2014-(x+1).x2013+...+(x+1)x2-(x+1)x+2016

=x2016-x2016-x2015+x2015+x2014-x2014-x2013+...+x3+x2-x2-x+2016

=-x+2016

=-2015+2016

=1

Vậy A=1.

b: \(=\dfrac{2014\cdot2015^2+2014\cdot2016-2016\cdot2015^2+2016\cdot2014}{2014\cdot2013^2-2014\cdot2012-2012\cdot2013^2-2012\cdot2014}\)

\(=\dfrac{2015^2\cdot\left(-2\right)+2\cdot\left(2015^2-1\right)}{2013^2\cdot\left(-2\right)-2\cdot\left(2013^2-1\right)}\)

\(=\dfrac{\left(-2\right)\cdot\left(2015^2-2015^2+1\right)}{\left(-2\right)\cdot\left(2013^2+2013^2-1\right)}=\dfrac{1}{2\cdot2013^2}\)

21 tháng 12 2018

\(C=1-2^2+3^2-4^2+...+2013^2-2014^2+2015^2\)

\(\Leftrightarrow C=2015^2+\left(1-2014^2\right)-\left(2^2-2013^2\right)+\left(3^2-2012^2\right)-...\)

\(\Leftrightarrow C=2015^2+\left(1+2014\right)\left(1-2014\right)-\left(2+2013\right)\left(2-2013\right)+\left(3+2012\right)\left(3-1012\right)-...\)\(\Leftrightarrow C=2015^2+\left[2015.\left(-2013\right)\right]-\left[2015.\left(-2013\right)\right]+...\)

\(\Leftrightarrow C=2015^2\)

(?)

24 tháng 11 2022

C=(1-2)(1+2)+(3-4)(3+4)+...+(2013-2014)(2013+2014)+2015^2

=2015^2-(1+2+3+...+2013+2014)

=2015^2-2014*2013/2

=2033134

9 tháng 12 2017

sai/sai đề thì phải

21 tháng 12 2015

( 4x2+2.2x.2y+4y2)+(x2-2x+1)+(y2+2y+1)=0
<=>(2x+2y)2+(x-1)2+(y+1)2=0
<=>2(x+y)2+(x-1)2+(y+1)2=0
=>x+y=0
*x-1=0 =>x=1
*y+1=0 =>y=-1

21 tháng 3 2017

\(a^2+b^2+c^2=1\Rightarrow a^2,b^2,c^2\le1\)\(\Rightarrow a,b,c\le1\)

Ta lại có: \(a^2+b^2+c^2=a^3+b^3+c^3\)

\(\Leftrightarrow a^3-a^2+b^3-b^2+c^3-c^2=0\)

\(\Leftrightarrow a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)=0\)

Mà \(a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)\le0\forall a,b,c\)(vì \(a^2,b^2,c^2\le0\) và \(a,b,c\le1\))

Suy ra ta phải có: \(a^2\left(a-1\right)=b^2\left(b-1\right)=c^2\left(c-1\right)=0\)

Kết hợp gt suy ra 3 số a,b,c phải là 1 số bằng 1 và 2 số còn lại bằng 0

Vì a,b,c vai trò như nhau nên giả sử \(a=1\Rightarrow b=c=0\)

Khi đó \(A=0^{2014}+1^{2015}+1^{2016}=1+1=2\)