K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

\(x^2+y^2+z^2=xy+yz+xz\)

\(\Leftrightarrow x^2+y^2+z^2-xy-yz-xz=0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)

\(\Rightarrow x=y=z\)

Mà \(x^{2015}+y^{2015}+z^{2015}=3^{2016}\Rightarrow x^{2015}+x^{2015}+x^{2015}=3^{2016}\)

\(\Leftrightarrow3x^{2015}=3^{2016}\Leftrightarrow x^{2015}=3^{2015}\Rightarrow x=3\)

Vậy \(x=y=z=3\)

23 tháng 8 2016

ta có : x^2 + y^2 +z^2 = xy + yz + xz
=> 2x^2 + 2y^2 +2z^2 = 2xy + 2yz + 2xz
=> ( x^2 -  2xy + y^2) + ( y^2 - 2yz + z^2 ) + ( z^2 -2xz + x^2 ) =0
=> ( x-y )^2 + ( y-z )^2 + ( z -x)^2 =0
=> x =y=z
thay vào .......


 

1 tháng 11 2018

(x+y+z)(xy+yz+zx)=xyz

x2y+xyz+zx2+xy2+y2z+xyz+xyz+yz2+z2x=xyz

(x2y+xy2)+(xyz+zx2)+(y2z+xyz)+(yz2+z2x)+xyz=xyz

xy(x+y)+zx(y+x)+yz(y+x)+z2(y+x)+xyz=xyz

(x+y)(xy+xz+yz+z2)+xyz=xyz

(x+y)[(xy+xz)+(yz+z2)]+xyz=xyz

(x+y)[x(y+z)+z(y+z)]+xyz=xyz

(x+y)(x+z)(y+z)+xyz=xyz

(x+y)(x+z)(y+z)=xyz-xyz

(x+y)(x+z)(y+z)=0

=>\(\left[{}\begin{matrix}x+y=0\\x+z=0\\y+z=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-y\\x=-z\\y=-z\end{matrix}\right.\)

Với x=-z

=>VT= x2015+y2015+z2015=(-z)2015+z2015+y2015=y2015

VP=(x+y+z)2015=(-z+y+z)2015=y2015

Vậy x2015+y2015+z2015=(x+y+z)2015 với (x+y+z)(xy+yz+zx)=xyz

14 tháng 2 2016

x2+y2+z2=xy+yz+zx

<=>2x2+2y2+2z2-2xy-2yz-2xz=0

<=>(x-y)2+(y-z)2+(z-x)2=0

<=>x=y=z 

Thay x=y=z vào x2014+y2014+z2014=32015 ta được:

3.x3014=3.32014

=>x2014=32014

=>x=3 hoặc x=-3

Vậy x=y=z=3 hoặc x=y=z=-3

14 tháng 2 2016

ko biết duyệt nha

14 tháng 2 2016

a) Ta có : 

abab   = ab .101

Để abab là số chính phương thì ab chỉ có thể bằng 101.

Mà ab là số có hai chữ số 

=> abab không phải là số chính phương

còn lại tự làm

14 tháng 2 2016

mik làm có đúng ko ?

x2+y2+z2=xy+yz+zx

<=>2x2+2y2+2z2-2xy-2yz-2xz=0

<=>(x-y)2+(y-z)2+(z-x)2=0

<=>x=y=z 

Thay x=y=z vào x2014+y2014+z2014=32015 ta được:

3.x3014=3.32014

=>x2014=32014

=>x=3 hoặc x=-3

Vậy x=y=z=3 hoặc x=y=z=-3

21 tháng 4 2016

x^2 + y^2 +z^2 =xy+yz+zx 

=> x^2 + y^2 +z^2-xy-yz-zx=0

2x^2 + 2y^2 + 2z^2 - 2xy-2yz-2zx=0

(x-y)^2 + (y-z)^2 + (z-x)^2=0

=> x=y=z (x;y;z >0)

=> 3.x^2014=3.y^2014=3.z^2014=3

x^2014=y^2014=z^2014=1

x=y=z=1 

tự tính P nha

31 tháng 10 2018

Từ xy+yz+zx=0 => 2(xy+yz+zx)=0

Từ x+y+z=0 => (x+y+z)2=0

=>x2+y2+z2+2(xy+yz+zx)=0

=>x2+y2+z2=0

Mà \(x^2\ge0,y^2\ge0,z^2\ge0\Rightarrow x^2+y^2+z^2\ge0\)

=>x=y=z=0

Thay x=y=z=0 vào A

=>A=-1+1-1=-1

31 tháng 10 2018

nhàm dòng cuối 

=>A=-1+0+1=0

NV
23 tháng 1 2019

\(x^2+y^2+z^2=xy+xz+yz\Leftrightarrow2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-y=0\\x-z=0\\y-z=0\end{matrix}\right.\) \(\Rightarrow x=y=z\)

\(x^{2014}+y^{2014}+z^{2014}=3\Rightarrow3x^{2014}=3\Rightarrow x^{2014}=1\)

\(\Rightarrow x=y=z=\pm1\)

- Nếu \(x=y=z=1\Rightarrow L=1+1+1=3\)

- Nếu \(x=y=z=-1\Rightarrow L=-1+1-1=-1\)