K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2016

VT= x2+4y2+z2-4x+4y-8z+32

= (x2-4x+4)+(4y2+4y+1)+(z2-8z+16)+11

= (x-2)2+(2y+1)2+(z-4)2+11>0

Vậy không có x,y,x thoã mã đẳng thức

8 tháng 9 2019

b) 4x^2+y^2-20x-2y+26=0;
(4x^2-20x+25)+(y^2-2y+1)=(2x-5)^2+(y-1)^2=0
<=>x=5/2; y=1

30 tháng 7 2018

\(x^2+4y^2-2x+4y+2=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(2y+1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(2y+1\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-\dfrac{1}{2}\end{matrix}\right.\)

8 tháng 7 2017

Ta có : x2 + 4y2 - 2x + 4y + 2 = 0

<=> (x2 - 2x + 1) + (4y2 + 4y + 1) = 0

<=> (x - 1)2 + (2x + 1)2 = 0

Mà : \(\left(x-1\right)^2\ge0\forall x\)

        \(\left(2x+1\right)^2\ge0\forall x\)

Nên \(\orbr{\begin{cases}x-1=0\\2x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\2x=-1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{2}\end{cases}}\)

2 tháng 10 2017

x2+x+1=x2+2.x.\(\frac{1}{2}\)+\(\frac{1}{4}+\frac{3}{4}\)=(x+\(\frac{1}{2}\))2\(+\frac{3}{4}\)lớn hơn 0 vớimọi x

2 tháng 10 2017

a) x2 + x + 1

= (x2 + x) + 1

=x(x+1) +1

=(x + 1)(x+1)

=(x+1)>0

13 tháng 6 2015

a)x2+y2-4x+4=0

<=>(x-2)2+y2=0

Do \(\left(x-2\right)^2\ge0;y^2\ge0\)

=>(x-2)2=0 và y2=0

<=>x=2 và y=0

b)2x2+y2-2xy+2x-4y+5=0

<=>(x2-2xy+y2-4y+4x+4)+(x2-2x+1)=0

<=>(x-y+2)2+(x-1)2=0

Do \(\left(x-y+2\right)^2\ge0;\left(x-1\right)^2\ge0\)

=>(x-y+2)2=0 và (x-1)2=0

<=>x=1 và y=3