Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VT= x2+4y2+z2-4x+4y-8z+32
= (x2-4x+4)+(4y2+4y+1)+(z2-8z+16)+11
= (x-2)2+(2y+1)2+(z-4)2+11>0
Vậy không có x,y,x thoã mã đẳng thức
b) 4x^2+y^2-20x-2y+26=0;
(4x^2-20x+25)+(y^2-2y+1)=(2x-5)^2+(y-1)^2=0
<=>x=5/2; y=1
Tìm x,y,z thỏa mãn phương trình sau :
x2 + 4y2 + z2 + 4x + 4y + 8z + 22 = 0
A/c nào giúp em với ạ !!!
\(x^2+4y^2-2x+4y+2=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(2y+1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(2y+1\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-\dfrac{1}{2}\end{matrix}\right.\)
Ta có : x2 + 4y2 - 2x + 4y + 2 = 0
<=> (x2 - 2x + 1) + (4y2 + 4y + 1) = 0
<=> (x - 1)2 + (2x + 1)2 = 0
Mà : \(\left(x-1\right)^2\ge0\forall x\)
\(\left(2x+1\right)^2\ge0\forall x\)
Nên \(\orbr{\begin{cases}x-1=0\\2x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\2x=-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{2}\end{cases}}\)
x2+x+1=x2+2.x.\(\frac{1}{2}\)+\(\frac{1}{4}+\frac{3}{4}\)=(x+\(\frac{1}{2}\))2\(+\frac{3}{4}\)lớn hơn 0 vớimọi x