K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2017

Ta có : x2 + 4y2 - 2x + 4y + 2 = 0

<=> (x2 - 2x + 1) + (4y2 + 4y + 1) = 0

<=> (x - 1)2 + (2x + 1)2 = 0

Mà : \(\left(x-1\right)^2\ge0\forall x\)

        \(\left(2x+1\right)^2\ge0\forall x\)

Nên \(\orbr{\begin{cases}x-1=0\\2x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\2x=-1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{2}\end{cases}}\)

29 tháng 6 2019

a) \(\Leftrightarrow4x^2+2y^2+4xy-20x-8y+26=0\)

\(\Leftrightarrow4x^2+4x\left(y-5\right)+\left(y-5\right)^2-\left(y-5\right)^2+2y^2-8y+26=0\)

\(\Leftrightarrow\left(2x+y-5\right)^2+y^2+2y+1=0\)

\(\Leftrightarrow\left(2x+y-5\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+y-5=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\) ( TM )

b) \(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2+6y+9\right)+\left(z^2-2z+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y+3\right)^2+\left(z-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+3=0\\z-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-3\\z=1\end{matrix}\right.\) ( TM )

c) \(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2xz\right)+\left(x^2+2x+1\right)+\left(z^2-4z+4\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+1\right)^2+\left(z-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=0\\x+1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-1\\z=2\end{matrix}\right.\) ( TM )

19 tháng 7 2017

2x2 + 2y2 + z2 + 2xy + 2xz + 2yz + 2x + 4y + 5 = 0

<=> (x2 + y2 + z2 + 2xy + 2yz + 2xz) + (x2 + 2x + 1) + (y2 + 4y + 4) = 0

<=> (x + y + z)2 + (x + 1)2 + (y + 2)2 = 0

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=0\\x+1=0\\y+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\\z=3\end{matrix}\right.\)

12 tháng 10 2019

\(2x^2+2y^2+z^2+2xy+2yz+2zx+2x+4y+5\)

\(=\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+2x+1\right)+\left(y^2+4y+4\right)\)

\(=\left(x+y+z\right)^2+\left(x+1\right)^2+\left(y+2\right)^2=0\)

Mà: \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}}\Rightarrow\hept{\begin{cases}\left(x+y+z\right)^2=0\\\left(x+1\right)^2=0\\\left(y+2\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+z=0\\x+1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+z=0\\x=-1\\y=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}z=3\\x=-1\\y=-2\end{cases}}\)

14 tháng 6 2018

1,2x2+2y2+z2+2xy+2xz+2yz+10x+6y+34=0

<=>(x2+y2+z2+2xy+2xz+2yz)+(x2+10x+25)+(y2+6y+9)=0

<=>(x+y+z)2+(x+5)2+(y+3)2=0

Mà \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+5\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}\Rightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2\ge0}\)

\(\Rightarrow\hept{\begin{cases}\left(x+y+z\right)^2=0\\\left(x+5\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+y+z=0\\x=-5\\y=-3\end{cases}\Rightarrow}\hept{\begin{cases}z=8\\x=-5\\y=-3\end{cases}}}\)

2, A=2x2+4y2+4xy+2x+4y+9

=(x2+4xy+4y2)+(2x+4y)+x2+9

=[(x+2y)2+2(x+2y)+1]+x2+8

=(x+2y+1)2+x2+8

Vì \(\hept{\begin{cases}\left(x+2y+1\right)^2\ge0\\x^2\ge0\end{cases}}\Rightarrow\left(x+2y+1\right)^2+x^2\ge0\)

\(\Rightarrow\left(x+2y+1\right)^2+x^2+8\ge8\)

Dấu "=" xảy ra khi x=0,y=-1/2

Vậy Amin = 8 khi x=0,y=-1/2

14 tháng 6 2018

Bài 1:

Ta có:\(2x^2+2y^2+z^2+2xy+2xz+2yz+10x+6y+34=0\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2xz+2yz\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)

Vì 3 vế trên đều dương ,nên ta có

\(\hept{\begin{cases}x+y+z=0\\x+5=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}z=0-y-x\\x=-5\\y=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}z=0+3+5=8\\x=-5\\y-3\end{cases}}}\)

Vậy ...........................................................................................................................

5 tháng 8 2015

 

x2+4y2-2x+4y+2=0

<=>x2-2x+1+4y2+4y+1=0

<=>(x-1)2+(2y+1)2=0

<=>x-1=0 và 2y+1=0

<=>x=1 và y=-1/2

 

19 tháng 7 2018

x^2+2xy+y^2+y^2-2yz+z^2+y^2+4y+4+6-2x=0

(x+y)^2+(y-z)^2+(y+2)^2+2*(3-x)=0

y+2=0=>y=-2

y-z=0=>z=-2 

x+y=0=>x=2

19 tháng 7 2018

<=>(x2+2xy+y2)+(y2-2yz+z2)+(y2+6y+9)-(2x+2y)+1=0

<=>[(x+y)2-2(x+y)+1]+(y-z)2+(y+3)2=0

<=>(x+y-1)2+(y-z)2+(y+3)2=0

Vì \(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}\Rightarrow\left(x+y-1\right)^2+\left(y-z\right)^2+\left(y+3\right)^2\ge0}\)

\(\Rightarrow\hept{\begin{cases}x+y-1=0\\y-z=0\\y+3=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=1\\y-z=0\\y=-3\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\z=-3\\y=-3\end{cases}}}\)

Vậy x=4,y=z=-3