Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng BĐT Cauchy cho 2 số dương:
\(x^2+y^2\ge2\sqrt{\left(xy\right)^2}=2xy\)
\(y^2+z^2\ge2\sqrt{\left(yz\right)^2}=2yz\)
\(x^2+z^2\ge2\sqrt{\left(xz\right)^2}=2xz\)
Cộng từ vế của các BĐT trên:
\(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)
\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\)
(Dấu "="\(\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\x=y\end{cases}}\Leftrightarrow x=y=z\))
b) \(2x^2+2y^2+z^2+2xy+2yz+2xz+10x+6y+34=0\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2xz\right)+\left(x^2+10x+25\right)\)
\(+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)(1)
Mà \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+5\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}}\)nên (1) xảy ra
\(\Leftrightarrow\hept{\begin{cases}x+y+z=0\\x+5=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}z=8\\x=-5\\y=-3\end{cases}}\)
a) \(\Leftrightarrow4x^2+2y^2+4xy-20x-8y+26=0\)
\(\Leftrightarrow4x^2+4x\left(y-5\right)+\left(y-5\right)^2-\left(y-5\right)^2+2y^2-8y+26=0\)
\(\Leftrightarrow\left(2x+y-5\right)^2+y^2+2y+1=0\)
\(\Leftrightarrow\left(2x+y-5\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+y-5=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\) ( TM )
b) \(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2+6y+9\right)+\left(z^2-2z+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y+3\right)^2+\left(z-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+3=0\\z-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-3\\z=1\end{matrix}\right.\) ( TM )
c) \(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2xz\right)+\left(x^2+2x+1\right)+\left(z^2-4z+4\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+1\right)^2+\left(z-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=0\\x+1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-1\\z=2\end{matrix}\right.\) ( TM )
2x2 + 2y2 + z2 + 2xy + 2xz + 2yz + 10x + 6y + 34 = 0
(x2 + y2 + z2 + 2xy + 2xz + 2yz) + (x2 + 10x + 25) + (y2+ 6y + 9) = 0
( x + y + z)2 + ( x + 5)2 + (y + 3)2 = 0
( x + y + z)2 = 0 ;
( x + 5)2 = 0 ;
(y + 3)2 = 0
vậy x = - 5 ; y = -3; z = 8
Tìm x, y, z biết rằng: 2x2 + 2y2 + z2 + 2xy + 2xz + 2yz + 10x + 6y + 34 = 0
Giải
2x2 + 2y2 + z2 + 2xy + 2xz + 2yz + 10x + 6y + 34 = 0
(x2 + y2 + z2 + 2xy + 2xz + 2yz) + (x2 + 10x + 25) + (y2+ 6y + 9) = 0
( x + y + z)2 + ( x + 5)2 + (y + 3)2 = 0
( x + y + z)2 = 0 ; ( x + 5)2 = 0 ; (y + 3)2 = 0
x = - 5 ; y = -3; z = 8
\(\left(a+b+c\right)^2+a^2+b^2+c^2\)
\(=a^2+b^2+c^2+2ab+2bc+2ca+a^2+b^2+c^2\)
\(=2a^2+2b^2+2c^2+2ab+2bc+2ac\) (1)
\(\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)
\(=a^2+2ab+b^2+b^2+2bc+c^2+c^2+2ca+a^2\)
\(=2a^2+2b^2+2c^2+2ab+2bc+2ca\) (2)
Từ (1) và (2)
\(\Rightarrowđpcm\)
2x2 + 2y2 + z2 + 2xy + 2yz + 2xz + 10x + 6y + 34 = 0
<=> [x2 + y2 + z2 + 2(xy + yz + xz)] + (x2 + 10x + 25) + (y2 + 6y + 9) = 0
<=> (x + y + z)2 + (x + 5)2 + (y + 3)2 = 0
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=0\\x+5=0\\y+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=-3\\z=8\end{matrix}\right.\)
\(2x^2+2y^2+z^2+2xy+2yz+2zx+2x+4y+5\)
\(=\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+2x+1\right)+\left(y^2+4y+4\right)\)
\(=\left(x+y+z\right)^2+\left(x+1\right)^2+\left(y+2\right)^2=0\)
Mà: \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}}\Rightarrow\hept{\begin{cases}\left(x+y+z\right)^2=0\\\left(x+1\right)^2=0\\\left(y+2\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+z=0\\x+1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+z=0\\x=-1\\y=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}z=3\\x=-1\\y=-2\end{cases}}\)
1,2x2+2y2+z2+2xy+2xz+2yz+10x+6y+34=0
<=>(x2+y2+z2+2xy+2xz+2yz)+(x2+10x+25)+(y2+6y+9)=0
<=>(x+y+z)2+(x+5)2+(y+3)2=0
Mà \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+5\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}\Rightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2\ge0}\)
\(\Rightarrow\hept{\begin{cases}\left(x+y+z\right)^2=0\\\left(x+5\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+y+z=0\\x=-5\\y=-3\end{cases}\Rightarrow}\hept{\begin{cases}z=8\\x=-5\\y=-3\end{cases}}}\)
2, A=2x2+4y2+4xy+2x+4y+9
=(x2+4xy+4y2)+(2x+4y)+x2+9
=[(x+2y)2+2(x+2y)+1]+x2+8
=(x+2y+1)2+x2+8
Vì \(\hept{\begin{cases}\left(x+2y+1\right)^2\ge0\\x^2\ge0\end{cases}}\Rightarrow\left(x+2y+1\right)^2+x^2\ge0\)
\(\Rightarrow\left(x+2y+1\right)^2+x^2+8\ge8\)
Dấu "=" xảy ra khi x=0,y=-1/2
Vậy Amin = 8 khi x=0,y=-1/2
Bài 1:
Ta có:\(2x^2+2y^2+z^2+2xy+2xz+2yz+10x+6y+34=0\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2xz+2yz\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)
Vì 3 vế trên đều dương ,nên ta có
\(\hept{\begin{cases}x+y+z=0\\x+5=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}z=0-y-x\\x=-5\\y=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}z=0+3+5=8\\x=-5\\y-3\end{cases}}}\)
Vậy ...........................................................................................................................