K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2017

Có\(\dfrac{3x-5y}{4}=\dfrac{4z+=-3x}{5}=\dfrac{5y-4z}{6}=\dfrac{3x-5y+4z-3x+5y-4z}{4+5+6}=\dfrac{0}{15}=0\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-5y}{4}=0\Rightarrow3x-5y=0\Rightarrow3x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}\Rightarrow\dfrac{x}{20}=\dfrac{y}{12}\\\dfrac{5y-4z}{6}=0\Rightarrow5y-4z=0\Rightarrow5y=4z\Rightarrow\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{12}=\dfrac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau

\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y+z}{20+12+15}=\dfrac{16}{47}\)

\(\Rightarrow\dfrac{x}{20}=\dfrac{16}{47}\Rightarrow x=\dfrac{320}{47}\)

\(\Rightarrow\dfrac{y}{12}=\dfrac{16}{47}\Rightarrow y=\dfrac{192}{47}\)

\(\Rightarrow\dfrac{z}{15}=\dfrac{16}{47}\Rightarrow z=\dfrac{240}{47}\)

Vậy \(\left(x;y;z\right)=\left(\dfrac{320}{47};\dfrac{192}{47};\dfrac{240}{47}\right)\)

5 tháng 11 2017

Đề bài sai rồi

11 tháng 11 2023

\(\dfrac{4x-3y}{5}=\dfrac{5y-4z}{3}=\dfrac{3z-5x}{4}\)

=>\(\left\{{}\begin{matrix}\dfrac{4x-3y}{5}=\dfrac{5y-4z}{3}\\\dfrac{4x-3y}{5}=\dfrac{3z-5x}{4}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3\left(4x-3y\right)=5\left(5y-4z\right)\\4\left(4x-3y\right)=5\left(3z-5x\right)\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}12x-9y-25y+20z=0\\16x-12y-15z+25x=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}12x-34y+20z=0\\41x-12y-15z=0\end{matrix}\right.\)

mà x-y+z=200 nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}12x-34y+20z=0\\41x-12y-15z=0\\x-y+z=200\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}36x-102y+60z=0\\164x-48y-60z=0\\60x-60y+60z=12000\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}200x-150y=0\\-24x-42y=-12000\\x-y+z=200\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4x-3y=0\\4x+7y=2000\\x-y+z=200\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-10y=-2000\\4x-3y=0\\x-y+z=200\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=200\\4x=3y\\x-y+z=200\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=200\\x=\dfrac{3}{4}y=150\\150-200+z=200\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=200\\x=150\\z=250\end{matrix}\right.\)

16 tháng 7 2021

a, \(3x=5y=7z=>\dfrac{3x}{105}=\dfrac{5y}{105}=\dfrac{7z}{105}=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}\)

áp dụng tính chất dãy tỉ số = nhau

\(=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}=\dfrac{x+y+z}{35+21+15}=\dfrac{10}{71}\)

\(=>\dfrac{x}{35}=\dfrac{10}{71}=>x=\dfrac{350}{71}\)

\(=>\dfrac{y}{21}=\dfrac{10}{71}=>y=\dfrac{210}{71}\)

\(=>\dfrac{z}{15}=\dfrac{10}{71}=>z=\dfrac{150}{71}\)

b, \(\)\(6x=5y=>\dfrac{x}{5}=\dfrac{y}{6}=>\dfrac{x}{20}=\dfrac{y}{24}\)

có \(7y=8z=>\dfrac{y}{8}=\dfrac{z}{7}=>\dfrac{y}{24}=\dfrac{z}{21}\)

\(=>\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}\)

áp dụng t/c dãy tỉ số = nhau

\(=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}=\dfrac{3x+2y+4z}{60+48+84}=\dfrac{12}{192}=\dfrac{1}{16}\)

\(=>\dfrac{3x}{60}=\dfrac{1}{16}=>x=1,25\)

\(=>\dfrac{2y}{48}=\dfrac{1}{16}=>y=1,5\)

\(=>\dfrac{4z}{84}=\dfrac{1}{16}=>z=1,3125\)

c, \(x:y:z=1:2:3=>\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\)

\(=>x=\dfrac{y}{2},z=\dfrac{3y}{2}\)

thay x,z vào \(x^3+y^3+z^3=36=>\left(\dfrac{y}{2}\right)^3+y^3+\left(\dfrac{3y}{2}\right)^3=36\)

\(=>y=2\)

\(=>x=\dfrac{y}{2}=\dfrac{2}{2}=1,z=\dfrac{3y}{2}=\dfrac{3.2}{2}=3\)

d, \(\dfrac{x}{2}=\dfrac{y}{3}=>x=\dfrac{2y}{3}\)

thay x vào \(3x^3+y^3=51=>3.\left(\dfrac{2y}{3}\right)^3+y^3=51=>y=3\)

\(=>x=\dfrac{2.3}{3}=2\)

 

 

16 tháng 7 2021

c, từ đoạn này á

\(\left(\dfrac{y}{2}\right)^3+y^3+\left(\dfrac{3y}{2}\right)^3=36\)

\(< =>\dfrac{y^3}{8}+\dfrac{8y^3}{8}+\dfrac{27y^3}{8}=36\)

\(=>\dfrac{36y^3}{8}=36=>36y^3=8.36=>y^3=8=>y=2\)

10 tháng 10 2018

a) ta có : \(\dfrac{x}{2}\) = \(\dfrac{y}{3}\) = \(\dfrac{x}{16}=\dfrac{y}{24}\) ( 1)

\(\dfrac{y}{8}=\dfrac{z}{5}\) = \(\dfrac{y}{24}=\dfrac{z}{15}\) (2)

từ (1) và (2) , ta có : \(\dfrac{x}{16}=\dfrac{y}{24}=\dfrac{z}{15}\)

mà x - y + z = 35

theo tính chất của dãy tỉ số bằng nhau , ta có :

\(\dfrac{x}{16}=\dfrac{y}{24}=\dfrac{z}{15}=\dfrac{x-y+z}{16-24+15}=\dfrac{35}{7}=5\)

do đó : \(\dfrac{x}{16}=5\) => x = 5. 16 = 80

\(\dfrac{y}{24}=5\) => y = 5.24 = 120

\(\dfrac{z}{15}=5\) => z = 5.15 = 75

vậy x = 80

y = 120

z = 75

10 tháng 10 2018

mấy câu còn lại thì tương tự nha bn

10 tháng 11 2017

\(a,3x=-5y\Rightarrow\dfrac{x}{-5}=\dfrac{y}{3}\)\(y-x=-3\)

Áp dụng tính chất dãy tỉ số bằng nhau có:

\(\dfrac{x}{-5}=\dfrac{y}{3}=\dfrac{y-x}{3-\left(-5\right)}=-\dfrac{3}{8}\)

+) \(\dfrac{x}{-5}=\dfrac{3}{8}\Rightarrow8x=-15\Rightarrow x=-\dfrac{15}{8}\)

+) \(\dfrac{y}{3}=-\dfrac{3}{8}\Rightarrow8y=-9\Rightarrow y=-\dfrac{9}{8}\)

Vậy ...

xem lại đề

\(\)