K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2017

Đề bài sai rồi

4 tháng 11 2017

Có\(\dfrac{3x-5y}{4}=\dfrac{4z+=-3x}{5}=\dfrac{5y-4z}{6}=\dfrac{3x-5y+4z-3x+5y-4z}{4+5+6}=\dfrac{0}{15}=0\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-5y}{4}=0\Rightarrow3x-5y=0\Rightarrow3x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}\Rightarrow\dfrac{x}{20}=\dfrac{y}{12}\\\dfrac{5y-4z}{6}=0\Rightarrow5y-4z=0\Rightarrow5y=4z\Rightarrow\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{12}=\dfrac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau

\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y+z}{20+12+15}=\dfrac{16}{47}\)

\(\Rightarrow\dfrac{x}{20}=\dfrac{16}{47}\Rightarrow x=\dfrac{320}{47}\)

\(\Rightarrow\dfrac{y}{12}=\dfrac{16}{47}\Rightarrow y=\dfrac{192}{47}\)

\(\Rightarrow\dfrac{z}{15}=\dfrac{16}{47}\Rightarrow z=\dfrac{240}{47}\)

Vậy \(\left(x;y;z\right)=\left(\dfrac{320}{47};\dfrac{192}{47};\dfrac{240}{47}\right)\)

26 tháng 10 2017

a) \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)

Từ \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\Rightarrow\dfrac{x^3}{2^3}=\dfrac{y^3}{4^3}=\dfrac{z^3}{6^3}\)

\(\Leftrightarrow\dfrac{x^2}{2^2}=\dfrac{y^2}{4^2}=\dfrac{z^2}{6^2}\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)

\(\Rightarrow\dfrac{x^2}{4}=\dfrac{1}{4}\Rightarrow x^2=\dfrac{1}{4}\cdot4\Rightarrow x^2=1\Rightarrow x=1\)

\(\dfrac{y^2}{16}=\dfrac{1}{4}\Rightarrow y^2=\dfrac{1}{4}\cdot16\Rightarrow y^2=4\Rightarrow y=2\)

\(\dfrac{z^2}{36}=\dfrac{1}{4}\Rightarrow z^2=\dfrac{1}{4}\cdot36\Rightarrow z^2=9\Rightarrow z^2=3\)

Xin lỗi mình chỉ làm được câu a)

26 tháng 10 2017

buồn nhỉ

28 tháng 11 2017

g,

\(\dfrac{3x-2y}{5}=\dfrac{2z-5x}{3}=\dfrac{5y-3z}{2}\)

\(\Rightarrow\dfrac{15x-10y}{25}=\dfrac{6z-15x}{9}=\dfrac{10y-6z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\dfrac{15x-10y}{25}=\dfrac{6z-15x}{9}=\dfrac{10y-6z}{4}=\dfrac{15x-10y+6z-15x+10y-6z}{25+9+4}=0\)\(\Rightarrow3x-2y=2z-5x=5y-3z=0\)

* 3x - 2y = 0 \(\Rightarrow3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\)

* 2z - 5x = 0 \(\Rightarrow2z=5x\Rightarrow\dfrac{x}{2}=\dfrac{z}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y+z}{2+3+5}=\dfrac{50}{10}=5\)

\(\cdot\dfrac{x}{2}=5\Rightarrow x=10\)

\(\cdot\dfrac{y}{3}=5\Rightarrow y=15\)

\(\cdot\dfrac{z}{5}=5\Rightarrow z=25\)

28 tháng 11 2017

câu h thiếu điều kiện rồi bạn ơi

11 tháng 11 2023

\(\dfrac{4x-3y}{5}=\dfrac{5y-4z}{3}=\dfrac{3z-5x}{4}\)

=>\(\left\{{}\begin{matrix}\dfrac{4x-3y}{5}=\dfrac{5y-4z}{3}\\\dfrac{4x-3y}{5}=\dfrac{3z-5x}{4}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3\left(4x-3y\right)=5\left(5y-4z\right)\\4\left(4x-3y\right)=5\left(3z-5x\right)\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}12x-9y-25y+20z=0\\16x-12y-15z+25x=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}12x-34y+20z=0\\41x-12y-15z=0\end{matrix}\right.\)

mà x-y+z=200 nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}12x-34y+20z=0\\41x-12y-15z=0\\x-y+z=200\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}36x-102y+60z=0\\164x-48y-60z=0\\60x-60y+60z=12000\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}200x-150y=0\\-24x-42y=-12000\\x-y+z=200\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4x-3y=0\\4x+7y=2000\\x-y+z=200\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-10y=-2000\\4x-3y=0\\x-y+z=200\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=200\\4x=3y\\x-y+z=200\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=200\\x=\dfrac{3}{4}y=150\\150-200+z=200\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=200\\x=150\\z=250\end{matrix}\right.\)

a: 2x-3y-4z=24

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x-3y-4z}{2\cdot1-3\cdot6-4\cdot3}=\dfrac{24}{-28}=\dfrac{-6}{7}\)

=>x=-6/7; y=-36/7; z=-18/7

b: 6x=10y=15z

=>x/10=y/6=z/4=k

=>x=10k; y=6k; z=4k

x+y-z=90

=>10k+6k-4k=90

=>12k=90

=>k=7,5

=>x=75; y=45; z=30

d: x/4=y/3

=>x/20=y/15

y/5=z/3

=>y/15=z/9

=>x/20=y/15=z/9

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-4}=25\)

=>x=500; y=375; z=225