K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2015

có tích của 4 số TN liên tiếp +1 là cp
Đặt \(\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)+1=k^2\)
\(\Rightarrow k^2+5^y=11880\)
=> kchia hết cho 25
mà 11880=2376.5=> 5y chia hết cho 5y nhưng không chia hết cho 25 => y=1
tự giải tiếp tìm x nhé

17 tháng 12 2015

y=0 phau k anh

rui anh tìm tiep x nhe

18 tháng 2 2019

Gọi d là ước chung lớn nhất của x, y thì ta có

\(\hept{\begin{cases}x=da\\y=db\end{cases}}\)với a, b nguyên tố cùng nhau

Thế vào bài toán ta được

\(d^3a^3-d^3b^3=95\left(d^2a^2+d^2b^2\right)\)

\(\Leftrightarrow d\left(a-b\right)\left(a^2+ab+b^2\right)=95\left(a^2+b^2\right)\)

Dễ thấy \(a^2+ab+b^2;a^2+b^2\)nguyên tố cùng nhau

\(\Rightarrow95⋮a^2+ab+b^2\)

Tới đây làm nốt

18 tháng 2 2019

b/ \(\left(x-y\right)^3+\left(y-x\right)^3+3|2-x|=27\)

\(\Leftrightarrow|2-x|=9\)

12 tháng 7 2016

\(\Leftrightarrow x^3\left(x+1\right)+x\left(x+1\right)+1=2016^y.\)(2)

\(x\in Z\Rightarrow x\left(x+1\right)\)chẵn ( tích của 2 số nguyên liên tiếp).

=> Vế Trái (2) là 1 số nguyên lẻ.

\(y\in Z\)và nếu:

  • y < 0, VP (2) là 1 phân số >0 và <1, không thể bằng VT là 1 số nguyên lẻ.
  • y > 0, VP (2) là 1 số nguyên chẵn, không thể bằng VT là 1 số nguyên lẻ.
  • => y = 0.

Với y = 0, phương trình đã cho trở thành:

\(x^4+x^3+x^2+x+1=2016^0=1\)

\(\Leftrightarrow x\left(x+1\right)\left(x^2+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Vậy, PT có 2 cặp nghiệm là: (0; 0) và (-1; 0).

30 tháng 11 2017

2x + 1 = y2 

=> y2-1 = 2x => (y+1)(y-1)=2x 

x, y \(\in\)N => (y+1)=2m và y-1=2n (m>n & x=m+n)

=> (y+1) - (y-1) = 2m-2n

=> 2 = 2n(2(m-n)-1). 

2(m-n)-1 là số lẻ lại là ước của 2 => 2(m-n)-1 = 1.

=> 2n=2 =>n=1. => 2(m-1) - 1 = 1 =>2(m-1) =2 =>m=2.

Vậy x=m+n=3 và y=2n +1 = 3.

     

a: Để đây là hàm số bậc nhất thì (3m-1)(2m+3)<>0

hay \(m\in\left\{\dfrac{1}{3};-\dfrac{3}{2}\right\}\)

c: Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m^2-5m+6=0\\m^2+mn+6n^2< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;3\right\}\\m^2+mn+6n^2< >0\end{matrix}\right.\)

Trường hợp 1: m=2

\(\Leftrightarrow4+2n+6n^2< >0\)

Đặt \(6n^2+2n+4=0\)

\(\text{Δ}=2^2-4\cdot6\cdot4=4-96=-92< 0\)

Do đó: \(4+2n+6n^2< >0\forall n\)

Trường hợp 2: m=3

\(\Leftrightarrow9+3n+6n^2< >0\)

Đặt \(6n^2+3n+9=0\)

\(\text{Δ}=3^2-4\cdot6\cdot9=9-216=-207< 0\)

Do đó: \(6n^2+3n+9\ne0\forall n\)

Vậy: m=2 hoặc m=3