Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)(2x-5)^2006>/0( mọi x)
(y^2-1)^2008>/0(mọi x)
(x-z)^2010>/0(mọi x)
Để (2x-5)^2006+(y^2-1)^2008+(x-z)^2010=0
=>2x-5=y^2-1=x-z=0
=>x=2,5;y=1;z=2,5
c) TH1 : x <=3 thì |3 -x| = 3 -x do đó ta đc 3 - x + 3x - 1 =0=> x = -1
TH2 : x > 3 thì |3 -x| = x -3, do đó ta đc : x - 3 + 3x -1 =0 => x = 1
a, Xét (3x-5)^2006; (y^2-1)^2008;9x-7)^2100 lú nào cũng lớn hơn hoặc bằng 0 nên suy ra (3x-5)^2006 +(Y^2-1)^2008+(x-7)^2100 >hoặc bằng 0 . Dể cộng vào bằng 0 thì (3x-5)^2006 =0; (y^2-1)^2008=0; (x-7)^2100=0 suy ra 3x-5=0;Y^2-1=0;'x-7=0
3x=5,x=5/3; y^2=1 ,y=+ - 1;x=7
\(\left(2x-5\right)^{2006}+\left(3y+4\right)^{2008}=0\)
Vì \(\left\{{}\begin{matrix}\left(2x-5\right)^{2006}\ge0\forall x\\\left(3y+4\right)^{2008}\ge0\forall y\end{matrix}\right.\)\(\Rightarrow\left(2x-5\right)^{2006}+\left(3y+4\right)^{2008}\ge0\forall x,y\)
Dấu = xảy ra khi: \(\left\{{}\begin{matrix}\left(2x-5\right)^{2006}=0\\\left(3y+4\right)^{2008}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=-\frac{4}{3}\end{matrix}\right.\)
Vậy \(x=\frac{5}{2},y=-\frac{4}{3}\)
\(\left(2x-5\right)^{2006}+\left(3y+4\right)^{2008}=0\)
Ta có:
\(\left\{{}\begin{matrix}\left(2x-5\right)^{2006}\ge0\\\left(3y+4\right)^{2008}\ge0\end{matrix}\right.\forall x,y\)
\(\Rightarrow\left(2x-5\right)^{2006}+\left(3y+4\right)^{2008}\ge0\forall x,y.\)
\(\Rightarrow\left(2x-5\right)^{2006}+\left(3y+4\right)^{2008}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(2x-5\right)^{2006}=0\\\left(3y+4\right)^{2008}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=5\\3y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=5:2\\y=\left(-4\right):3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=-\frac{4}{3}\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\frac{5}{2};-\frac{4}{3}\right\}.\)
Chúc bạn học tốt!
Ví dụ : Tìm tập hợp các ước của 24
Ư(24) = {1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 24 }
Ta có thể tìm các ước của a bằng cách lần lượt chia a cho
các số tự nhiên từ 1 đến a để xét xem a chia hết cho những
số nào ,khi đó các số ấy là ước của a
\(a,2^{x+1}\cdot3^y=12^x\)
\(\Leftrightarrow2^{x+1}\cdot3^y=2^{2x}\cdot3^x\)
\(\Leftrightarrow\frac{2^{2x}}{2^{x+1}}=\frac{3^y}{3^x}\)
\(\Leftrightarrow2^{x-1}=3^{y-x}\)
\(\Leftrightarrow x-1=y-x=0\)
\(\Leftrightarrow x=y=1\)
b, \(10^x:5^y=20^y\)
=> \(5^y=\frac{10^x}{20^y}\)
=> \(5^y=\frac{2^x\cdot5^x}{2^y\cdot2^{5y}}\)
....
Làm nốt cho đến khi suy ra
=> \(x=2y\)
\(10+\frac{12}{1+2}+\frac{12}{1+2+3}+...+\frac{12}{1+2+3+...+2001}\)
ai giúp