Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 2\(^3\) . x + 2005\(^0\) . x = 994-15:3+1\(^{2025}\)
8 .x + 1 . x = 990
x . [ 8 +1 ] = 990
x . 9 = 990
x = 990 : 9
x = 110
Vì : \(\left(2x-5\right)^{2022}\ge0\forall x,\left(3y+4\right)^{2024}\ge0\forall y\\ =>\left(2x-5\right)^{2022}+\left(3y+4\right)^{2024}\ge0\)
Do đó đề bài xảy ra khi và chỉ khi :
\(\left\{{}\begin{matrix}\left(2x-5\right)^{2022}=0\\\left(3y+4\right)^{2024}=0\end{matrix}\right.\\ =>\left(x;y\right)=\left(\dfrac{5}{2};-\dfrac{4}{3}\right)\)
Mình ko biết cách để làm ra đc kết quả này, có thể giải thích cụ thể hơn ko ạ?
a, 2017-|x-2017| = x
=> |x - 2017| = 2017 - x
Th1: x \(\ge\)2017
=> x - 2017 = 2017 - x
=> x + x = 2017 + 2017
=> x = 2017 (thỏa mãn)
Th2: x < 2017
=> x - 2017 = -2017 + x
=> x - x = -2017 + 2017
=> 0 = 0
Vậy x = 2017
b, Vì \(\hept{\begin{cases}\left(2x-5\right)^{2018}\ge0\\\left(3y-7\right)^{2020}\ge0\\\left|x+y+z\right|\ge0\end{cases}\forall x,y,z}\)
\(\Rightarrow\left(2x-5\right)^{2018}+\left(3y-7\right)^{2020}+\left|x+y+z\right|\ge0\)
Mà \(\left(2x-5\right)^{2018}+\left(3y-7\right)^{2020}+\left|x+y+z\right|=0\)
Do đó \(\hept{\begin{cases}\left(2x-5\right)^{2018}=0\\\left(3y-7\right)^{2020}=0\\\left|x+y+z\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x-5=0\\3y-7=0\\x+y+z=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{7}{3}\\z=\frac{-29}{6}\end{cases}}}\)
Ta có: \(\left(2x-1\right)^{2020}\ge0\forall x\)
\(\left(y-\frac{2}{5}\right)^{2020}\ge0\forall y\)
Do đó: \(\left(2x-1\right)^{2020}+\left(y-\frac{2}{5}\right)^{2020}\ge0\forall x,y\)
mà \(\left(2x-1\right)^{2020}+\left(y-\frac{2}{5}\right)^{2020}=0\)
nên \(\left\{{}\begin{matrix}\left(2x-1\right)^{2020}=0\\\left(y-\frac{2}{5}\right)^{2020}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\y-\frac{2}{5}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=1\\y=\frac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{2}{5}\end{matrix}\right.\)
Vậy: \(x=\frac{1}{2}\); \(y=\frac{2}{5}\)
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn dễ hơn nhé.
Tìm x, y, z biết:\(\sqrt{\left(x-2024\right)^2}\) + ∣ x+ y -4z ∣ + \(\sqrt{5y^2}\) = 0 với x,y,z ϵ R
Lời giải:
Ta thấy: $\sqrt{(x-2024)^2}\geq 0$ với mọi $x\in\mathbb{R}$
$|x+y-4z|\geq 0$ với mọi $x,y,z\in\mathbb{R}$
$\sqrt{5y^2}\geq 0$ với mọi $y\in\mathbb{R}$
Do đó để tổng của chúng bằng $0$ thì bản thân mỗi số đó phải nhận giá trị $0$
Hay:
$\sqrt{(x-2024)^2}=|x+y-4z|=\sqrt{5y^2}=0$
$\Leftrightarrow x=2024; y=0; z=\frac{x+y}{4}=506$
helps me
^-^