K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

Ta có : 12x2 + 8x = 0 

<=> 4x(3x + 2) = 0

\(\Leftrightarrow\orbr{\begin{cases}4x=0\\3x+2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x=-2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{2}{3}\end{cases}}\)

2 tháng 8 2017

a, 4x(3x - 2) = 0

=> x=0 hoac x= 2/3

b, 2x2 + 10x - x -5 =0

<=> (x + 5)(2x-1) =0

=> x = -5 hoac x = 1/2

22 tháng 8 2017

a) \(x^2+x+1=\left(x^2+2.\dfrac{1}{2}x+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

ta có : \(\left(x+\dfrac{1}{2}\right)^2\ge0\) với mọi \(x\) \(\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\) với mọi \(x\) (đpcm)

b) \(2x^2+2x+1=2\left(x^2+x+\dfrac{1}{2}\right)=2\left(\left(x^2+2.\dfrac{1}{2}x+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{1}{4}\right)\)

\(=2\left(\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{4}\right)=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\)

ta có : \(\left(x+\dfrac{1}{2}\right)^2\ge0\) với mọi \(x\) \(\Rightarrow2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\) với mọi \(x\) (đpcm)

c) \(-9x^2+12x-15=-\left(9x^2-12x+15\right)=-\left(9x^2-2.3.2x+4+11\right)\)

\(=-\left(\left(3x-2\right)^2+11\right)=-\left(3x-2\right)^2-11\)

ta có : \(\left(3x-2\right)^2\ge0\) với mọi \(x\) \(\Rightarrow-\left(3x-2\right)^2-11\le-11< 0\) với mọi \(x\) (đpcm)

d) \(3x-x^2-4=-\left(x^2-3x+4\right)=-\left(\left(x^2-2.x.\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2\right)+\dfrac{7}{4}\right)\)

\(=-\left(x-\dfrac{3}{2}\right)^2-\dfrac{7}{4}\) ta có \(\left(x-\dfrac{3}{2}\right)^2\ge0\) với mọi \(x\)

\(\Rightarrow-\left(x-\dfrac{3}{2}\right)^2-\dfrac{7}{4}\le\dfrac{-7}{4}< 0\) với mọi \(x\) (đpcm)

e) \(6x-3x^2-5=-3\left(x^2-2x+\dfrac{5}{3}\right)=-3\left(\left(x^2-2x+1\right)+\dfrac{2}{3}\right)\)

\(=-3\left(\left(x-1\right)^2+\dfrac{2}{3}\right)=-3\left(x-1\right)^2-2\)

ta có \(\left(x-1\right)^2\ge0\) với mọi \(x\) \(\Rightarrow-3\left(x-1\right)^2-2\le-2< 0\) với mọi \(x\) (đpcm)

22 tháng 8 2017

thanks

23 tháng 7 2017

\(a,x^3-3x^2+3x-1=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

\(b,\left(x-2\right)^3+6\left(x+1\right)^2-x+12=0\)

\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x+12=0\)\(\Leftrightarrow x^3+23x+10=0\) (1)

Đặt \(t=\dfrac{x}{\dfrac{2\sqrt{69}}{3}}\Leftrightarrow x=\dfrac{2\sqrt{69}}{3}t\)

Khi đó: (1) \(\Leftrightarrow4t^3+3t=-0,2355375386\)

Đặt a= \(\sqrt[3]{-0,2355375386+\sqrt{-0,2355375386^2+1}}\)

\(\alpha=\dfrac{1}{2}\left(a-\dfrac{1}{a}\right)\) , ta được:

\(4\alpha^3+3\alpha=-0,2355375386\) , vậy \(t=\alpha\) là nghiệm của pt

Vậy t= \(\dfrac{1}{2}\left(\sqrt[3]{-0,2355375386}+\sqrt{-0,2355375386^2+1}\right)\) \(\left(\sqrt[3]{-0,2355375386-\sqrt{-0,2355375386^2+1}}\right)\)\(=-0,07788262891\)

\(\Rightarrow x=\dfrac{2\sqrt{69}}{3}.t=-0,4312944692\)

\(c,x^3+6x^2+12x+8=0\)

\(\Leftrightarrow\left(x+2\right)^3=0\)

\(\Leftrightarrow x+2=0\Rightarrow x=-2\)

\(d,x^3-6x^2+12x-8=0\)

\(\Leftrightarrow\left(x-2\right)^3=0\)

\(\Rightarrow x-2=0\Rightarrow x=2\)

\(e,8x^3-12x^2+6x-1=0\)

\(\Leftrightarrow\left(2x-1\right)^3=0\)

\(\Rightarrow2x-1=0\Rightarrow x=\dfrac{1}{2}\)

\(f,x^3+9x^2+27x+27=0\)

\(\Leftrightarrow\left(x+3\right)^3=0\)

\(\Rightarrow x+3=0\Rightarrow x=-3\)

giúp tôi với

23 tháng 1 2020

1) 2x4 - 9x3 + 14x2 - 9x + 2 = 0

<=> (2x4 - 4x3) - (5x3 - 10x2) + (4x2 - 8x) - (x - 2) = 0

<=> 2x3(x - 2) - 5x2(x - 2) + 4x(x - 2) - (x - 2) = 0

<=> (2x3 - 5x2 + 4x - 1)(x - 2) = 0

<=> [(2x3 - 2x2) - (3x2 - 3x) + (x - 1)](x - 2) = 0

<=> [2x2(x - 1) - 3x(x - 1) + (x - 1)](x - 2) = 0

<=> (2x2 - 2x - x + 1)(x - 1)(x - 2) = 0

<=> (2x - 1)(x - 1)2(x - 2) = 0

<=> 2x - 1=0

hoặc x - 1 = 0

hoặc x - 2 = 0

<=> x = 1/2

hoặc x = 1

hoặc x = 2

Vậy S = {1/2; 1; 2}

23 tháng 8 2018

c/ đk: x khác 1; x khác -3

\(\dfrac{3x-1}{x-1}+\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)

\(\Rightarrow\left(3x+1\right)\left(x+3\right)+\left(2x+5\right)\left(x-1\right)+4=x^2+2x-3\)

\(\Leftrightarrow3x^2+10x+3+2x^2+3x-5+4=x^2+2x-3\)

\(\Leftrightarrow4x^2+11x+5=0\)

\(\Leftrightarrow\left(4x^2+2\cdot2x\cdot\dfrac{11}{4}+\dfrac{121}{16}\right)-\dfrac{41}{16}=0\)

\(\Leftrightarrow\left(2x+\dfrac{11}{4}\right)^2=\dfrac{41}{16}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{11}{4}=\dfrac{\sqrt{41}}{4}\\2x+\dfrac{11}{4}=-\dfrac{\sqrt{41}}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-11+\sqrt{41}}{8}\\x=\dfrac{-11-\sqrt{41}}{8}\end{matrix}\right.\)

Vậy.........

d/ \(\dfrac{12x+1}{6x-2}-\dfrac{9x-5}{3x+1}=\dfrac{108x-36x^2-9}{4\left(9x^2-1\right)}\)

đk: \(x\ne\pm\dfrac{1}{3}\)

\(\Leftrightarrow\dfrac{12x+1}{2\left(3x-1\right)}-\dfrac{9x-5}{3x+1}=\dfrac{108x-36x^2-9}{4\left(3x-1\right)\left(3x+1\right)}\)

\(\Rightarrow2\left(12x+1\right)\left(3x+1\right)-4\left(9x-5\right)\left(3x-1\right)=108x-36x^2-9\)

\(\Leftrightarrow72x^2+24x+6x+2-108x^2+36x-60x-20-108x+36x^2+9=0\)

\(\Leftrightarrow-102x-9=0\)

\(\Leftrightarrow-102x=9\Leftrightarrow x=-\dfrac{3}{34}\)(TM)

Vậy.........

23 tháng 8 2018

a/ \(\left(x+1\right)^2\left(x+2\right)+\left(x+1\right)^2\left(x-2\right)=-24\)

\(\Leftrightarrow\left(x+1\right)^2\left(x+2+x-2\right)=-24\)

\(\Leftrightarrow2x\left(x^2+2x+1\right)=-24\)

\(\Leftrightarrow2x^3+4x^2+2x+24=0\)

\(\Leftrightarrow2x^3-2x^2+8x+6x^2-6x+24=0\)

\(\Leftrightarrow x\left(2x^2-2x+8\right)+3\left(2x^2-2x+8\right)=0\)

\(\Leftrightarrow\left(2x^2-2x+8\right)\left(x+3\right)=0\)

\(\Leftrightarrow2\left(x^2-x+4\right)\left(x+3\right)=0\)

Ta thấy: \(x^2-x+4=\left(x^2-2x\cdot\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{15}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{15}{4}>0\)

=> x+ 3 = 0 <=> x= -3

Vậy......

b/ \(2x^3+3x^2+6x+5=0\)

\(\Leftrightarrow2x^3+x^2+5x+2x^2+x+5=0\)

\(\Leftrightarrow x\left(2x^2+x+5\right)+\left(2x^2+x+5\right)=0\)

\(\Leftrightarrow\left(2x^2+x+5\right)\left(x+1\right)=0\)

Ta thấy: \(2x^2+x+5=\left(\sqrt{2}x+2\cdot\sqrt{2}x\cdot\dfrac{\sqrt{2}}{4}+\dfrac{1}{8}\right)+\dfrac{39}{8}=\left(\sqrt{2}x+\dfrac{\sqrt{2}}{4}\right)^2+\dfrac{39}{8}>0\)

=> x + 1 = 0 <=> x = -1

Vậy....

12 tháng 8 2019

b) \(7x\left(x-2\right)-\left(x-2\right)=0\) 

<=>  \(\left(7x-1\right)\left(x-2\right)=0\)

=> x=1/7  hoặc x=2

c) <=>  (2x-1)3   =0 

=> x=1/2

d)<=>  \(\left(2x-3\right)\left(2x+3\right)-x\left(2x-3\right)=0\)

<=>  \(\left(2x-3\right)\left(x+3\right)=0\)

=> x=3/2  hoặc x=-3

e) <=>\(x^2\left(x+5\right)+9\left(x+5\right)=0\)

<=> \(\left(x+5\right)\left(x^2+9\right)=0\)

=> x=-5

f) \(x^3-6x^2-x+30=0\)

<=>\(x^3+2x^2-8x^2-16x+15x+30=0\)

<=>\(x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)=0\)

<=>\(\left(x+2\right)\left(x^2-5x-3x+15\right)=0\)

<=> \(\left(x+2\right)\left(x-5\right)\left(x-3\right)=0\)

=> x=-2 hoặc x=5 hoặc x=3

13 tháng 6 2017

a)

a) 3x2+12x66=0

=> 3(x + 2)2 - 12 - 66 = 0

=> 3(x + 2)2 - 78 = 0

=> 3(x + 2)2 = 78

=> (x + 2)2 = 26

=> x = \(\sqrt{26}-2\)

b)9x230x+225=0

=> (3x - 5)2 - 25 + 225 = 0

=> (3x - 5)2 + 200 = 0

=> (3x - 5)2 = -200

9x2 - 30x + 225 không có ngiệmc)x2+3x10=0=> (x + 1,5)2 - 2,25 - 10 = 0

=> (x + 1,5)2 - 12,25 = 0

=> (x + 1,5)2 = 12, 25

=> x + 1,5 = 3,5

=> x = 2

d)3x27x+1=0=> 3(x - \(\dfrac{7}{6}\))2 - \(\dfrac{49}{12}\) + 1 = 0

=> 3(x - \(\dfrac{7}{6}\))2 - \(\dfrac{37}{12}\) = 0

=> 3(x - \(\dfrac{7}{6}\))2 = \(\dfrac{37}{12}\)

=> (x - \(\dfrac{7}{6}\))2 = \(\dfrac{37}{36}\)

=> x = \(\dfrac{\sqrt{37}}{6}+\dfrac{7}{6}=\dfrac{\sqrt{37}+7}{6}\)

e) 3x27x+8=0

=> 3(x - \(\dfrac{7}{6}\))2 - \(\dfrac{49}{12}\)+ 8 = 0

=> 3(x - \(\dfrac{7}{6}\))2 + \(\dfrac{47}{12}\) = 0

=> 3(x - \(\dfrac{7}{6}\))2 = \(-\dfrac{47}{12}\)

KL : Không có ngiệm