K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2017

a)

a) 3x2+12x66=0

=> 3(x + 2)2 - 12 - 66 = 0

=> 3(x + 2)2 - 78 = 0

=> 3(x + 2)2 = 78

=> (x + 2)2 = 26

=> x = \(\sqrt{26}-2\)

b)9x230x+225=0

=> (3x - 5)2 - 25 + 225 = 0

=> (3x - 5)2 + 200 = 0

=> (3x - 5)2 = -200

9x2 - 30x + 225 không có ngiệmc)x2+3x10=0=> (x + 1,5)2 - 2,25 - 10 = 0

=> (x + 1,5)2 - 12,25 = 0

=> (x + 1,5)2 = 12, 25

=> x + 1,5 = 3,5

=> x = 2

d)3x27x+1=0=> 3(x - \(\dfrac{7}{6}\))2 - \(\dfrac{49}{12}\) + 1 = 0

=> 3(x - \(\dfrac{7}{6}\))2 - \(\dfrac{37}{12}\) = 0

=> 3(x - \(\dfrac{7}{6}\))2 = \(\dfrac{37}{12}\)

=> (x - \(\dfrac{7}{6}\))2 = \(\dfrac{37}{36}\)

=> x = \(\dfrac{\sqrt{37}}{6}+\dfrac{7}{6}=\dfrac{\sqrt{37}+7}{6}\)

e) 3x27x+8=0

=> 3(x - \(\dfrac{7}{6}\))2 - \(\dfrac{49}{12}\)+ 8 = 0

=> 3(x - \(\dfrac{7}{6}\))2 + \(\dfrac{47}{12}\) = 0

=> 3(x - \(\dfrac{7}{6}\))2 = \(-\dfrac{47}{12}\)

KL : Không có ngiệm

12 tháng 3 2020

\(\left(x+1\right)^2=4\left(x^2-2x+1\right)^2\\\Leftrightarrow\left(x+1\right)^2=4\left(x-1\right)^2\\\Leftrightarrow \left(x+1\right)^2-4\left(x-1\right)^2=0\\\Leftrightarrow \left(x+1\right)^2-\left(2x-2\right)^2=0\\\Leftrightarrow \left[\left(x+1\right)+\left(2x-2\right)\right]\left[\left(x+1\right)-\left(2x-2\right)\right] =0\\ \Leftrightarrow\left(x+1+2x-2\right)\left(x+1-2x+2\right)=0\\\Leftrightarrow \left(3x-1\right)\left(3-x\right)=0\\\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=3\end{matrix}\right. \)

Vậy phương trình có tập nghiệm \(S=\left\{\frac{1}{3};3\right\}\)

\(\left(2x+7\right)^2=9\left(x+2\right)^2\\ \Leftrightarrow\left(2x+7\right)^2-9\left(x+2\right)^2=0\\ \Leftrightarrow\left(2x+7\right)^2-\left(3x+6\right)^2=0\\ \Leftrightarrow\left[\left(2x+7\right)+\left(3x+6\right)\right]\left[\left(2x+7\right)-\left(3x+6\right)\right]=0\\ \Leftrightarrow\left(2x+7+3x+6\right)\left(2x+7-3x-6\right)=0\\ \Leftrightarrow\left(5x+13\right)\left(1-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}5x+13=0\\1-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-13}{5}\\x=1\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{\frac{-13}{5};1\right\}\)

\(4\left(2x+7\right)^2=9\left(x+3\right)^2\\\Leftrightarrow 4\left(2x+7\right)^2-9\left(x+3\right)=0\\ \Leftrightarrow\left(4x+14\right)^2-\left(3x+9\right)^2=0\\\Leftrightarrow \left[\left(4x+14\right)+\left(3x+9\right)\right]\left[\left(4x+14\right)-\left(3x+9\right)\right]=0\\\Leftrightarrow \left(4x+14+3x+9\right)\left(4x+14-3x-9\right)=0\\\Leftrightarrow \left(7x+23\right)\left(x+5\right)=0\\\Leftrightarrow\left[{}\begin{matrix}7x+23=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-23}{7}\\x=-5\end{matrix}\right. \)

Vậy phương trình có tập nghiệm \(S=\left\{\frac{-23}{7};-5\right\}\)

15 tháng 3 2020

tiếp đi bạnhehe

2 tháng 5 2019

f, 3x2+4x-4=0

\(\Leftrightarrow\)3x2+6x-2x-4=0

\(\Leftrightarrow\)3x(x+2)-2(x+2)=0

\(\Leftrightarrow\)(x+2)(3x-2)=0

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\3x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-2\\x=\frac{2}{3}\end{matrix}\right.\left(tm\right)\)

Vậy pt có tập nghiệm S = \(\left\{-2;\frac{2}{3}\right\}\)

22 tháng 8 2017

a) \(x^2+x+1=\left(x^2+2.\dfrac{1}{2}x+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

ta có : \(\left(x+\dfrac{1}{2}\right)^2\ge0\) với mọi \(x\) \(\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\) với mọi \(x\) (đpcm)

b) \(2x^2+2x+1=2\left(x^2+x+\dfrac{1}{2}\right)=2\left(\left(x^2+2.\dfrac{1}{2}x+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{1}{4}\right)\)

\(=2\left(\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{4}\right)=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\)

ta có : \(\left(x+\dfrac{1}{2}\right)^2\ge0\) với mọi \(x\) \(\Rightarrow2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\) với mọi \(x\) (đpcm)

c) \(-9x^2+12x-15=-\left(9x^2-12x+15\right)=-\left(9x^2-2.3.2x+4+11\right)\)

\(=-\left(\left(3x-2\right)^2+11\right)=-\left(3x-2\right)^2-11\)

ta có : \(\left(3x-2\right)^2\ge0\) với mọi \(x\) \(\Rightarrow-\left(3x-2\right)^2-11\le-11< 0\) với mọi \(x\) (đpcm)

d) \(3x-x^2-4=-\left(x^2-3x+4\right)=-\left(\left(x^2-2.x.\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2\right)+\dfrac{7}{4}\right)\)

\(=-\left(x-\dfrac{3}{2}\right)^2-\dfrac{7}{4}\) ta có \(\left(x-\dfrac{3}{2}\right)^2\ge0\) với mọi \(x\)

\(\Rightarrow-\left(x-\dfrac{3}{2}\right)^2-\dfrac{7}{4}\le\dfrac{-7}{4}< 0\) với mọi \(x\) (đpcm)

e) \(6x-3x^2-5=-3\left(x^2-2x+\dfrac{5}{3}\right)=-3\left(\left(x^2-2x+1\right)+\dfrac{2}{3}\right)\)

\(=-3\left(\left(x-1\right)^2+\dfrac{2}{3}\right)=-3\left(x-1\right)^2-2\)

ta có \(\left(x-1\right)^2\ge0\) với mọi \(x\) \(\Rightarrow-3\left(x-1\right)^2-2\le-2< 0\) với mọi \(x\) (đpcm)

22 tháng 8 2017

thanks

7 tháng 11 2021

e) \(\left(9x^2-49\right)+\left(3x+7\right)\left(7x+3\right)=0\)

\(\Rightarrow\text{[}\left(3x\right)^2-7^2\text{]}+\left(3x+7\right)\left(7x+3\right)=0\)

\(\Rightarrow\left(3x-7\right)\left(3x+7\right)+\left(3x+7\right)\left(7x+3\right)=0\)

\(\Rightarrow\left(3x+7\right)\text{[}\left(3x-7\right)+\left(7x+3\right)\text{]}=0\)

\(\Rightarrow\left(3x+7\right)\left(3x-7+7x+3\right)=0\)

\(\Rightarrow\left(3x+7\right)\left(10x-4\right)=0\)

=> 2 TH

*3x+7=0               *10x-4=0

=>3x=-7               =>10x=4

=>x=-7/3              =>x=4/10=2/5

vậy x=-7/3 hoặc x=2/5

g) \(\left(x-4\right)^2=\left(2x-1\right)^2\)

\(\Rightarrow\left(x-4\right)^2-\left(2x-1\right)^2=0\)

\(\Rightarrow\left(x-4-2x+1\right)\left(x-4+2x-1\right)=0\)

\(\Rightarrow\left(-x-3\right)\left(3x-5\right)=0\)

\(\Rightarrow-\left(x+3\right)\left(3x-5\right)=0\)

=> 2 TH

*-(x+3)=0          *3x-5=0

=>-x=-3            =>3x=5  

=x=3                =>x=5/3

h)\(x^2-x^2+x-1=0\)

\(\Rightarrow0+x-1=0\)

\(\Rightarrow x-1=0\)

=>x=0+1

=>x=1

vậy x=1

k, x(x+ 16) - 7x - 42 = 0

=>x^2+16x-7x-42=0

=>x^2+9x-42=0

vì x^2>0

do đó x^2+9x-42>0

nên o có gt nào của x t/m y/cầu đề bài

m)x^2+7x+12=0

=>x^2+3x++4x+12=0

=>x(x+3)+4(x+3)=0

=>(x+4).(x+3)=0

=>2 TH

=> *x+4=0

=>x=-4

vậy x=-4

*x+3=0

=>x=-3

vậy x=-3

n)x^2-7x+12=0

=>x^2-4x-3x+12=0

=>x(x-4)-3(x-4)=0

=>(x-3).(x-4)=0

=>2 TH

*x-3=0=>x=0+3=>x=3

*x-4=0=>x=0+4=>x=4

vậy x=3 hoặc x=4

7 tháng 11 2021

a)(3x−3)(5−21x)+(7x+4)(9x−5)=44⇔15x−63x2−15+63x+63x2−35x+36x−20=44⇔79x−35=44⇔79x=79⇒x=1a)(3x−3)(5−21x)+(7x+4)(9x−5)=44⇔15x−63x2−15+63x+63x2−35x+36x−20=44⇔79x−35=44⇔79x=79⇒x=1

b)(x+1)(x+2)(x+5)−x2(x+8)=27⇔x2+2x+x+2(x+5)−x3−8x2=27⇔x2(x+5)+2x(x+5)+x(x+5)+2(x+5)−x3−8x2=27⇔x3+5x2+2x2+10x+x2+5x+2x+10−x3−8x2=27⇔17x+10=27⇔17x=17⇒x=1

AH
Akai Haruma
Giáo viên
22 tháng 2 2020

a)

\(3x^2+12x-66=0\)

\(\Leftrightarrow x^2+4x-22=0\)

\(\Leftrightarrow x^2+4x+4=26\Leftrightarrow (x+2)^2=26\)

\(\Rightarrow x+2=\pm \sqrt{26}\Rightarrow x=-2\pm \sqrt{26}\)

b)

\(9x^2-30x+225=0\)

\(\Leftrightarrow (3x)^2-2.3x.5+25+200=0\)

\(\Leftrightarrow (3x-5)^2=-200< 0\) (vô lý nên pt vô nghiệm)

c)

\(x^2+3x-10=0\)

\(\Leftrightarrow x^2-2x+5x-10=0\)

\(\Leftrightarrow x(x-2)+5(x-2)=0\Leftrightarrow (x+5)(x-2)=0\)

\(\Rightarrow x=-5\) hoặc $x=2$

AH
Akai Haruma
Giáo viên
22 tháng 2 2020

d)

$3x^2-7x+1=0$

$\Leftrightarrow 3(x^2-\frac{7}{3}x)+1=0$

$\Leftrightarrow 3(x^2-\frac{7}{3}x+\frac{7^2}{6^2})=\frac{37}{12}$

$\Leftrightarrow 3(x-\frac{7}{6})^2=\frac{37}{12}$
$\Leftrightarrow (x-\frac{7}{6})^2=\frac{37}{36}$

$\Rightarrow x-\frac{7}{6}=\frac{\pm \sqrt{37}}{6}$

$\Rightarrow x=\frac{7\pm \sqrt{37}}{6}$

e)

$3x^2+7x+2=0$

$\Leftrightarrow 3(x^2+\frac{7}{3}x+\frac{7^2}{6^2})=\frac{25}{12}$

$\Leftrightarrow 3(x+\frac{7}{6})^2=\frac{25}{12}$

$\Leftrightarrow (x+\frac{7}{6})^2=\frac{25}{36}$

$\Rightarrow x+\frac{7}{6}=\pm \frac{5}{6}$

$\Rightarrow x=\frac{-1}{3}$ hoặc $x=-2$

19 tháng 3 2020

a, (3x-1)2 - (x+3)2 = 0

<=> [(3x-1)-(x+3)][(3x-1)+(x+3)] = 0

<=> (3x-1-x-3)(3x-1+x+3) = 0

<=> (2x-4)(4x+2) = 0

=> 2x-4=0 hoặc 4x+2=0

=> 2x =4 hoặc 4x = -2

=> x = 2 hoặc x = \(\frac{-1}{2}\)

19 tháng 3 2020

\(\begin{array}{l} a){\left( {3x - 1} \right)^2} - {\left( {x + 3} \right)^2} = 0\\ \Leftrightarrow \left( {3x - 1 + x + 3} \right)\left[ {3x - 1 - x - 3} \right] = 0\\ \Leftrightarrow \left( {4x + 2} \right)\left( {2x - 4} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} 4x + 2 = 0\\ 2x - 4 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = - \dfrac{1}{2}\\ x = 2 \end{array} \right.\\ b){x^3} - \dfrac{x}{{49}} = 0\\ \Leftrightarrow 49{x^3} - x = 0\\ \Leftrightarrow x\left( {49{x^2} - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x = 0\\ 49{x^2} - 1 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = \pm \dfrac{1}{7} \end{array} \right.\\ c){x^2} - 7x + 12 = 0\\ \Leftrightarrow {x^2} - 3x - 4x + 12 = 0\\ \Leftrightarrow x\left( {x - 3} \right) - 4\left( {x - 3} \right) = 0\\ \Leftrightarrow \left( {x - 3} \right)\left( {x - 4} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x - 3 = 0\\ x - 4 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 3\\ x = 4 \end{array} \right.\\ d)4{x^2} - 3x - 1 = 0\\ \Leftrightarrow 4{x^2} + x - 4x - 1 = 0\\ \Leftrightarrow x\left( {4x + 1} \right) - \left( {4x + 1} \right) = 0\\ \Leftrightarrow \left( {4x + 1} \right)\left( {x - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} 4x + 1 = 0\\ x - 1 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = - \dfrac{1}{4}\\ x = 1 \end{array} \right.\\ e){x^3} - 2x - 4 = 0\\ \Leftrightarrow {x^3} - 4x + 2x - 4 = 0\\ \Leftrightarrow x\left( {{x^2} - 4} \right) + 2\left( {x - 2} \right) = 0\\ \Leftrightarrow x\left( {x - 2} \right)\left( {x + 2} \right) + 2\left( {x - 2} \right) = 0\\ \Leftrightarrow \left( {x - 2} \right)\left[ {x\left( {x + 2} \right) + 2} \right] = 0\\ \Leftrightarrow \left( {x - 2} \right)\left( {{x^2} + 2x + 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x - 2 = 0\\ {x^2} + 2x + 2 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 2\\ {x^2} + 2x + 2x = 0\left( {VN} \right) \end{array} \right.\\ f){x^3} + 8{x^2} + 17x + 10 = 0\\ \Leftrightarrow \left( {x + 1} \right)\left( {{x^2} + 7x + 10} \right) = 0\\ \Leftrightarrow \left( {x + 1} \right)\left( {{x^2} + 5x + 2x + 10} \right) = 0\\ \Leftrightarrow \left( {x + 1} \right)\left[ {x\left( {x + 5} \right) + 2\left( {x + 5} \right)} \right] = 0\\ \Leftrightarrow \left( {x + 1} \right)\left( {x + 5} \right)\left( {x + 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x + 1 = 0\\ x + 5 = 0\\ x + 2 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = - 1\\ x = - 5\\ x = - 2 \end{array} \right. \end{array}\)

23 tháng 7 2017

\(a,x^3-3x^2+3x-1=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

\(b,\left(x-2\right)^3+6\left(x+1\right)^2-x+12=0\)

\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x+12=0\)\(\Leftrightarrow x^3+23x+10=0\) (1)

Đặt \(t=\dfrac{x}{\dfrac{2\sqrt{69}}{3}}\Leftrightarrow x=\dfrac{2\sqrt{69}}{3}t\)

Khi đó: (1) \(\Leftrightarrow4t^3+3t=-0,2355375386\)

Đặt a= \(\sqrt[3]{-0,2355375386+\sqrt{-0,2355375386^2+1}}\)

\(\alpha=\dfrac{1}{2}\left(a-\dfrac{1}{a}\right)\) , ta được:

\(4\alpha^3+3\alpha=-0,2355375386\) , vậy \(t=\alpha\) là nghiệm của pt

Vậy t= \(\dfrac{1}{2}\left(\sqrt[3]{-0,2355375386}+\sqrt{-0,2355375386^2+1}\right)\) \(\left(\sqrt[3]{-0,2355375386-\sqrt{-0,2355375386^2+1}}\right)\)\(=-0,07788262891\)

\(\Rightarrow x=\dfrac{2\sqrt{69}}{3}.t=-0,4312944692\)

\(c,x^3+6x^2+12x+8=0\)

\(\Leftrightarrow\left(x+2\right)^3=0\)

\(\Leftrightarrow x+2=0\Rightarrow x=-2\)

\(d,x^3-6x^2+12x-8=0\)

\(\Leftrightarrow\left(x-2\right)^3=0\)

\(\Rightarrow x-2=0\Rightarrow x=2\)

\(e,8x^3-12x^2+6x-1=0\)

\(\Leftrightarrow\left(2x-1\right)^3=0\)

\(\Rightarrow2x-1=0\Rightarrow x=\dfrac{1}{2}\)

\(f,x^3+9x^2+27x+27=0\)

\(\Leftrightarrow\left(x+3\right)^3=0\)

\(\Rightarrow x+3=0\Rightarrow x=-3\)