Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left(3x-5\right)^{26}\ge0\)
\(\left(y^2-1\right)^{28}\ge0\)
\(\left(x-z\right)^{10}\ge0\)
\(\Rightarrow\left(3x-5\right)^{26}+\left(y^2-1\right)^{28}+\left(x-z\right)^{10}\ge0\)
MÀ \(\Rightarrow\left(3x-5\right)^{26}+\left(y^2-1\right)^{28}+\left(x-z\right)^{10}=0\)(ĐỀ BÀI)
\(\Rightarrow\hept{\begin{cases}\left(3x-5\right)^{26}=0\\\left(y^2-1\right)^{28}=0\\\left(x-z\right)^{10}=0\end{cases}}\Rightarrow\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3x=5\\y^2=1\\x-z=0\end{cases}}\)
=> x = 5/3
y = 1 hoặc y = -1
z = 5/3
vi(3x-5);(y2-1)+(x-z)10 luon luon lon hon hoac =0
suy ra :3x-5=0 3x=5 x=3/5
va :y2 -1 =0 y2=1 y=1
va:x-z=0 ma x=3/5 suy ra :z=0-3/5 z=-3/5
Vì số mũ của 2 số trên là 100 và 200, đều là số chẵn => Không số nào trong số trên là số âm => Tổng của chúng là số vô âm => Tổng của chúng = 0 => Các hiệu (3x-5) và tổng (2y+1) = 0
=> 3x - 5 = 0 => 3x = 5 => x = 5/3
=> 2y + 1 = 0 => 2y = -1 => y = -0,5
Vậy x = 5/3 và y = -0,5
<Spyofgame200 - NO COPPY>
Bài này đáng lớp 6 thôi
a, ( x - 1 ) . ( x - 4 ) > = 0
Th1 : ( x - 1 ) . ( x - 4 ) > 0
=> x - 1 và x - 4 cùng dấu
( + ) x - 1 > 0 ( + ) x - 4 > 0
x > 1 x > 4
=> x > 4
( + ) x - 1 < 0 ( + ) x - 4 < 0
x < 1 x < 4
=> x < 1
Vậy x > 4 hoặc x < 1 thì ( x - 1 ) ( x - 4 ) > = 0
Phần b tương tự
\(a.\orbr{\begin{cases}\hept{\begin{cases}x-1\ge0\\x-4\ge0\end{cases}}\\\hept{\begin{cases}x-1\le0\\x-4\le0\end{cases}}\end{cases}\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x\ge1\\x\ge4\end{cases}}\\\hept{\begin{cases}x\le1\\x\le4\end{cases}}\end{cases}}\Rightarrow\orbr{\begin{cases}x\ge4\\x\le1\end{cases}}}\)
Có: (3x−5)100+(2x+1)200=((3x−5)50)2+((2x+1)100)2(3x−5)100+(2x+1)200=((3x−5)50)2+((2x+1)100)2 \geq 00
\Rightarrow BPT có nghiệm \Leftrightarrow {3x−5=02y+1=0{3x−5=02y+1=0 \Rightarrow {x=53y=−12{x=53y=−12
Vì \(\hept{\begin{cases}\left(3x-5\right)^{100}\ge0\\\left(2y+1\right)^{200}\ge0\end{cases}\Rightarrow\left(3x-5\right)^{100}+\left(2y+1\right)^{200}\ge0}\)
Theo đề bài:\(\left(3x-5\right)^{100}+\left(2y+1\right)^{200}\le0\)
=>\(\left(3x-5\right)^{100}+\left(2y+1\right)^{200}=0\)
=>\(\hept{\begin{cases}\left(3x-5\right)^{100}=0\\\left(2y+1\right)^{200}=0\end{cases}}\)
=>\(\hept{\begin{cases}3x-5=0\\2y+1=0\end{cases}}\)
=>\(\hept{\begin{cases}3x=5\\2y=-1\end{cases}}\)
=>\(\hept{\begin{cases}x=\frac{5}{3}\\y=\frac{-1}{2}\end{cases}}\)
Vậy \(x=\frac{5}{3}\) và \(y=\frac{-1}{2}\)