Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) TH1 : x <=3 thì |3 -x| = 3 -x do đó ta đc 3 - x + 3x - 1 =0=> x = -1
TH2 : x > 3 thì |3 -x| = x -3, do đó ta đc : x - 3 + 3x -1 =0 => x = 1
a, Xét (3x-5)^2006; (y^2-1)^2008;9x-7)^2100 lú nào cũng lớn hơn hoặc bằng 0 nên suy ra (3x-5)^2006 +(Y^2-1)^2008+(x-7)^2100 >hoặc bằng 0 . Dể cộng vào bằng 0 thì (3x-5)^2006 =0; (y^2-1)^2008=0; (x-7)^2100=0 suy ra 3x-5=0;Y^2-1=0;'x-7=0
3x=5,x=5/3; y^2=1 ,y=+ - 1;x=7
1. \(\left(3x-5\right)^{2010}+\left(y-1\right)^{2012}+\left(x-z\right)^{2014}=0\)
Vì \(\left(3x-5\right)^{2010}\ge0\forall x\); \(\left(y-1\right)^{2012}\ge0\forall y\); \(\left(x-z\right)^{2014}\ge0\forall x,z\)
\(\Rightarrow\left(3x-5\right)^{2010}+\left(y-1\right)^{2012}+\left(x-z\right)^{2014}\ge0\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}3x-5=0\\y-1=0\\x-z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=5\\y=1\\x=z\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=1\\z=\frac{5}{3}\end{cases}}\)
Vậy \(x=z=\frac{5}{3}\)và \(y=1\)
=>3x-5=0 và y2-1=0 và x-z=0
=>x=5/3 và y=-1 hoặc y=1 và z=5/3
\(A+B=0\)
\(\Leftrightarrow81x^{20}y^{12}+32x^{10}z^{20}=0\)
=>x=y=z=0
Ta có:\(A=\left(-3x^5y^3\right)^4\ge0\forall x;y\)
\(B=2^5.x^{10}z^{20}\ge0\forall x;z\)
=> \(A+B\ge0,\forall x;y;z\)
Do đó : A + B = 0
khi A = 0 và B = 0
<=> x = 0; y ,z bất kì hoặc y = z = 0 ; x bất kì.
Ta có \(\left(3x-5\right)^{2010}+\left(y-1\right)^{2012}+\left(x-z\right)^{2014}=0\left(1\right)\)
Vì \(2010;2012;2014\) đều là số mủ chẵn (2)
Từ (1) và (2)
\(\Rightarrow\left(3x-5\right)=0;\left(y-1\right)=0;\left(x-z\right)=0\)
\(\left(+\right)3x-5=0\Rightarrow3x=5\Rightarrow x=\frac{5}{3}\)
\(\left(+\right)y-1=0\Rightarrow y=1\)
\(\left(+\right)x-z=0\Rightarrow z=x=\frac{5}{3}\)
Vậy \(x=z=\frac{5}{3};y=1\)
Ta có :
\(\left(3x-5\right)^{26}\ge0\)
\(\left(y^2-1\right)^{28}\ge0\)
\(\left(x-z\right)^{10}\ge0\)
\(\Rightarrow\left(3x-5\right)^{26}+\left(y^2-1\right)^{28}+\left(x-z\right)^{10}\ge0\)
MÀ \(\Rightarrow\left(3x-5\right)^{26}+\left(y^2-1\right)^{28}+\left(x-z\right)^{10}=0\)(ĐỀ BÀI)
\(\Rightarrow\hept{\begin{cases}\left(3x-5\right)^{26}=0\\\left(y^2-1\right)^{28}=0\\\left(x-z\right)^{10}=0\end{cases}}\Rightarrow\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3x=5\\y^2=1\\x-z=0\end{cases}}\)
=> x = 5/3
y = 1 hoặc y = -1
z = 5/3
vi(3x-5);(y2-1)+(x-z)10 luon luon lon hon hoac =0
suy ra :3x-5=0 3x=5 x=3/5
va :y2 -1 =0 y2=1 y=1
va:x-z=0 ma x=3/5 suy ra :z=0-3/5 z=-3/5