Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x}{63}=\frac{y}{14}=\frac{4z}{40}=\frac{3x-y+4z}{63-14+40}=\frac{-10}{89}\)
\(\Rightarrow\frac{x}{21}=\frac{-10}{89}\Rightarrow x=\frac{-210}{89};\frac{y}{14}=\frac{-10}{89}\Rightarrow y=\frac{-140}{89};\frac{z}{10}=\frac{-10}{89}\Rightarrow z=\frac{-100}{89}\)
b)\(\frac{x-7+7}{8+7}=\frac{y-8+8}{9+8}=\frac{z-9+9}{10+9}=\frac{x}{15}=\frac{y}{17}=\frac{z}{19}=\frac{2x}{30}=\frac{y}{17}=\frac{3z}{57}=\frac{20}{70}=\frac{2}{7}\)
\(\Rightarrow\frac{x}{15}=\frac{2}{7}\Rightarrow x=\frac{30}{7};\frac{y}{17}=\frac{2}{7}\Rightarrow y=\frac{34}{7};\frac{z}{19}=\frac{2}{7}\Rightarrow z=\frac{38}{7}\)
a; Ta có: 2x=3y
nên x/3=y/2
=>x/21=y/14
Ta có: 5y=7z
nên y/7=z/5
=>y/14=z/10
=>x/21=y/14=z/10
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=\dfrac{3x-7y+5z}{3\cdot21-7\cdot14+5\cdot10}=\dfrac{30}{15}=2\)
Do đó: x=42; y=28; z=20
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{11}{6}}=\dfrac{y}{\dfrac{2}{9}}=\dfrac{z}{\dfrac{5}{18}}=\dfrac{-x+y+z}{-\dfrac{11}{6}+\dfrac{2}{9}+\dfrac{5}{18}}=\dfrac{-120}{-\dfrac{4}{3}}=90\)
Do đó: x=165; y=20; z=25
c: x/3=y/4
nên x/15=y/20
y/5=z/7
nên y/20=z/28
=>x/15=y/20=z/28
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x+3y-z}{2\cdot15+3\cdot20-28}=\dfrac{124}{62}=2\)
Do đó: x=30; y=40; z=56
a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)và\(x-y-z=-27\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)
Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)
\(\frac{y}{14}=9\Rightarrow y=9.14=126\)
\(\frac{z}{10}=9\Rightarrow z=9.10=90\)
Vậy:\(x=189;y=126\)và\(z=90\)
b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)và\(x^2-2y^2+z^2=18\)
\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)và\(x^2-2y^2+z^2=18\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)
Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)
\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)
\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)
Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)
minh lam cau b) roi dc co 2/3 thoy ban tham khao nhe phan () la minh giai thich nha dung viet vo bai !!
2x=3y ; 5y = 7z
+) 10x=15y=21z ( Quy dong)
+)10x/210 = 15y/210 = 21z/210 ( BC)
+) x/21 = y/14 = z/10 ( Rut gon)
+) 3x/63 = 7y/98 = 5z/50 = 3x-7y+ 5z / 63 - 98 - 50 = -30/14 = -2
+ x/21 = 2 => ............ phan nay minh chua xong neu xong thi minh pm not cho
a) \(2x=3y\Rightarrow x=\frac{3}{2}y\) hay \(y=\frac{2}{3}x\)
Thay \(x=\frac{3}{2}y\)vào, tA được:
\(3.\left(\frac{3}{2}y\right)+5y=19\)
\(\Leftrightarrow\frac{9}{2}y+5y=19\)
\(\Leftrightarrow y.\left(\frac{9}{2}+5\right)=19\)
\(\Leftrightarrow y.\frac{19}{2}=19\)
\(\Rightarrow y=19:\frac{19}{2}=2\)
\(\Rightarrow x=\frac{3}{2}.2=3\)
Vậy \(\hept{\begin{cases}x=3\\y=2\end{cases}.}\)
b) \(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}\)
Áp dụng công thúc dãy tỉ số bằng nhau ta được:
\(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{6}=\frac{x+y-z}{3+5-6}=\frac{10}{2}=5\)
\(\Rightarrow\hept{\begin{cases}x=5.3=15\\y=5.5=25\\z=5.6=30\end{cases}}\)
Vậy \(\hept{\begin{cases}x=15\\y=25\\z=30\end{cases}.}\)
ta có: \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}=\frac{3x}{9}=\frac{5y}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{3x}{9}=\frac{5y}{10}=\frac{3x+5y}{10+9}=\frac{19}{19}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{3x}{9}=1\\\frac{5y}{10}\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
Vậy \(x=3;y=2\)
Ta có: \(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}=\frac{x+y-z}{3+5-6}=\frac{10}{2}=5\)
\(\Rightarrow\frac{x}{3}=5\Rightarrow x=15\)
\(\frac{y}{5}=5\Rightarrow y=25\)
\(\frac{z}{6}=5\Rightarrow z=30\)
Vậy \(x=15;y=25;z=30\)
có vẻ bài này giống toán lp 6 lắm lun
hình như thế đó bạn