K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2021

???

???
???
???

24 tháng 9 2019

a, \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\) và x - 3y + 4z = 62

Áp dụng tính chất dãy tỉ số bằng nhau, ta có

\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)

\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)

⇒ x = 4.2 = 8

⇒ 3y = 2.9 = 18 ⇒ y = 18 : 3 = 6

⇒ 4z = 2.36 = 72 ⇒ z = 72 : 4 = 18

Vậy ...

b,\(\frac{x}{y}=\frac{9}{7},\frac{y}{z}=\frac{7}{3}\) và x - y + z = -15

Ta có

\(\frac{x}{y}=\frac{9}{7}\)\(\frac{x}{9}=\frac{y}{7}\) (1)

\(\frac{y}{z}=\frac{7}{3}\)\(\frac{y}{7}=\frac{z}{3}\) (2)

Từ (1) và (2)

\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có

\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=\frac{-15}{5}=-3\)

\(\left\{{}\begin{matrix}x=-3.9=-27\\y=-3.7=-21\\z=-3.3=-9\end{matrix}\right.\)

Vậy...

c, \(\frac{x}{y}=\frac{7}{20},\frac{y}{z}=\frac{5}{8}\) và 2x + 5y - 2z = 100

Ta có:

\(\frac{x}{y}=\frac{7}{20}\)\(\frac{x}{7}=\frac{y}{20}\) (1)

\(\frac{y}{z}=\frac{5}{8}\)\(\frac{y}{5}=\frac{z}{8}\)\(\frac{y}{20}=\frac{z}{32}\) (2)

Từ (1) và (2) ⇒ \(\frac{x}{7}=\frac{y}{20}=\frac{z}{32}\)

\(\frac{2x}{14}=\frac{5y}{100}=\frac{2z}{64}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có

\(\frac{2x}{14}=\frac{5y}{100}=\frac{2z}{64}=\frac{2x+5y-2z}{14+100-64}=\frac{100}{50}=2\)

⇒ 2x = 2.14 = 28 ⇒ x = 28 : 2 = 14

⇒ 5y = 2.100 = 200 ⇒ y = 200 : 5 = 40

⇒ 2z = 2.64 = 128 ⇒ z = 128 : 2 = 64

Vậy ...

Học tốt❤

18 tháng 2 2023

thank you

16 tháng 1 2016

Bạn áp dụng tính chất dãy tỉ số bằng nhau đi :)

7 tháng 7 2016

Đơn giản mà bạn

22 tháng 6 2017

a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)

Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

Khi đó: \(\hept{\begin{cases}\frac{5x}{50}=2\Rightarrow x=20\\\frac{y}{6}=2\Rightarrow y=12\\\frac{2z}{42}=2\Rightarrow z=42\end{cases}}\)

22 tháng 6 2017

e) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-5}{9}=\frac{50-5}{9}=5\)

Khi đó: \(\hept{\begin{cases}\frac{2x-2}{4}=5\Rightarrow x=11\\\frac{3y-6}{9}=5\Rightarrow y=17\\\frac{z-3}{4}=5\Rightarrow z=23\end{cases}}\).

22 tháng 6 2015

b) 3x = 2y

=>  x/2 = y/3      (1)

7y = 5z

=> y/5 = z/7       (2)

Từ (1) và (2), có:

     \(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\)\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

áp dụng tính chất của dãy tỉ số bằng nhau, có:

     \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

x/10 = 2            => x = 2 x 10 =20

y/15 = 2            => y = 2 x 15 = 30

z/21 = 2            => z = 2 x 21 = 42