Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\) và x - 3y + 4z = 62
Áp dụng tính chất dãy tỉ số bằng nhau, ta có
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)
⇒ \(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
⇒ x = 4.2 = 8
⇒ 3y = 2.9 = 18 ⇒ y = 18 : 3 = 6
⇒ 4z = 2.36 = 72 ⇒ z = 72 : 4 = 18
Vậy ...
b,\(\frac{x}{y}=\frac{9}{7},\frac{y}{z}=\frac{7}{3}\) và x - y + z = -15
Ta có
\(\frac{x}{y}=\frac{9}{7}\) ⇒ \(\frac{x}{9}=\frac{y}{7}\) (1)
\(\frac{y}{z}=\frac{7}{3}\) ⇒ \(\frac{y}{7}=\frac{z}{3}\) (2)
Từ (1) và (2)
⇒ \(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có
\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=\frac{-15}{5}=-3\)
⇒ \(\left\{{}\begin{matrix}x=-3.9=-27\\y=-3.7=-21\\z=-3.3=-9\end{matrix}\right.\)
Vậy...
c, \(\frac{x}{y}=\frac{7}{20},\frac{y}{z}=\frac{5}{8}\) và 2x + 5y - 2z = 100
Ta có:
\(\frac{x}{y}=\frac{7}{20}\) ⇒ \(\frac{x}{7}=\frac{y}{20}\) (1)
\(\frac{y}{z}=\frac{5}{8}\) ⇒ \(\frac{y}{5}=\frac{z}{8}\) ⇒ \(\frac{y}{20}=\frac{z}{32}\) (2)
Từ (1) và (2) ⇒ \(\frac{x}{7}=\frac{y}{20}=\frac{z}{32}\)
⇒ \(\frac{2x}{14}=\frac{5y}{100}=\frac{2z}{64}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có
\(\frac{2x}{14}=\frac{5y}{100}=\frac{2z}{64}=\frac{2x+5y-2z}{14+100-64}=\frac{100}{50}=2\)
⇒ 2x = 2.14 = 28 ⇒ x = 28 : 2 = 14
⇒ 5y = 2.100 = 200 ⇒ y = 200 : 5 = 40
⇒ 2z = 2.64 = 128 ⇒ z = 128 : 2 = 64
Vậy ...
Học tốt❤
Theo đề ta có:
\(\frac{x}{y}=\frac{9}{7};\frac{y}{z}=\frac{7}{3}\)
=> \(\frac{x}{9}=\frac{y}{7};\frac{y}{7}=\frac{z}{3}\)
Hay: \(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=\frac{-15}{5}=-3\)
=> \(\frac{x}{9}=-3\)
\(\frac{y}{7}=-3\)
\(\frac{z}{3}=-3\)
=> x = -27
y = -21
x= -9
Bạn kiểm tra lại thử giúp mình nha! mấy bài sau bạn làm tương tự, nhớ tick đúng cho mình nha! Cảm ơn bạn!
Câu a) sai đề nhé bạn.
b) Ta có:
\(\frac{x}{y}=\frac{7}{20};\frac{y}{z}=\frac{5}{8}\) và \(2x+5y-2z=100\)
\(\Rightarrow\frac{x}{7}=\frac{y}{20};\frac{y}{5}=\frac{z}{8}\Leftrightarrow\frac{x}{7}=\frac{y}{20}=\frac{z}{32}\) và \(2x+5y-2z=100\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{7}=\frac{y}{20}=\frac{z}{32}=\frac{2x+5y-2z}{2.7+5.20-2.32}=\frac{100}{50}=2\)
\(\hept{\begin{cases}\frac{x}{7}=2\Rightarrow x=2.7=14\\\frac{y}{20}=2\Rightarrow y=2.20=40\\\frac{z}{32}=2\Rightarrow z=2.32=64\end{cases}}\)
Vậy \(x=14;y=40;z=64\)