Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 + y2 + 2x - 4y + 5 = 0
<=> ( x2 + 2x +1 ) + ( y2 - 4y + 4 ) = 0
<=> ( x + 1 )2 + ( y - 2 ) 2 = 0
<=> \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x+1=0\\y-2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
b) x2 + 4y2 - x + 4y + \(\frac{5}{4}\)=0
<=> ( x2 - 2x + \(\frac{1}{4}\)) + ( 4y2 + 4y + 1 ) = 0
<=> ( x - \(\frac{1}{2}\))2 + ( 2y + 1 )2 = 0
<=> \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(2y+1\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\2y+1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{1}{2}\\2y=-1\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{-1}{2}\end{cases}}\)
Ta có: \(x^2+y^2-2x+4y+5=0\)
<=> \(\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)
<=> \(\left(x-1\right)^2+\left(y+2\right)^2=0\)
Vì \(\left(x-1\right)^2\ge0;\left(y+2\right)^2\ge0\)
=> \(\left[\begin{array}{nghiempt}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}x-1=0\\y+2=0\end{array}\right.\)<=> \(\left[\begin{array}{nghiempt}x=1\\y=-2\end{array}\right.\)
Vậy x=1 ; y=-2
x2-2x+y2+4y+5=0
<=>x2-2x+1+y2+4y+4=0
<=>(x-1)2+(y+2)2=0
<=>x-1=0 và y+2=0
<=>x=1 và y=-2
x2+4y2-2x+4y+2=0
<=>x2-2x+1+4y2+4y+1=0
<=>(x-1)2+(2y+1)2=0
<=>x-1=0 và 2y+1=0
<=>x=1 và y=-1/2
\(x^2+4y^2-2x+4y+2=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(2y+1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(2y+1\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-\dfrac{1}{2}\end{matrix}\right.\)
a )
\(A=x\left(x^3+y\right)-x^2\left(x^2-y\right)-x^2\left(y-1\right)\)
\(\Rightarrow A=x^4+xy-x^4+x^2y-x^2y+x^2\)
\(\Rightarrow A=x^2+xy=x\left(x+y\right)\)
Thay \(x=-10;y=5\)vào A , ta được :
\(A=-10\left(-10+5\right)\)
\(=-10.-5=50\)
Vậy \(A=50\)
a) A = x(x3 + y) - x2(x2 - y) - x2(y - 1)
= x4 + xy - x4 + x2y - x2y + x2
= xy + x2
Thay x = –10 và y = 5 vào (1), ta được:
A = -10.5 + (-10)2 = -50 + 100 = 50
Vậy giá trị của biểu thức A tại x = –10 và y = 5 là 50.
b)Ta có: 5x3 – 3x2 + 10x – 6 = (5x3 + 10x )+ ( -3x2– 6)
= 5x(x2 + 2) – 3(x2 + 2) = (x2 + 2)(5x – 3)
Vậy (x2 + 2)(5x – 3) = 0 ⇒ 5x – 3 = 0 (vì x2 + 2 ≥ 0, với mọi x)
⇒x = 3/5
c)Ta có: x2 + y2 – 2x + 4y + 5 = (x2 – 2x + 1) + (y2 + 4y + 4)
= (x – 1)2 + (y + 2)2
Vậy (x – 1)2 + (y + 2)2 = 0 ⇒ x – 1 = 0 hay y + 2 = 0
⇒ x = 1 hoặc y = -2
x2 + y2 - 2x + 4y + 5 = 0
<=>x2-2x+1+y2+4y+4=0
<=>(x-1)2+(y+2)2=0
<=>x-1=0 và y+2=0
<=>x=1 và y=-2
thiên tài học dốt. Ka ka